Skip to main content
Log in

Somatostatin-like immunoreactivity in non-pyramidal neurons of the human entorhinal region

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The distribution of somatostatin-immunoreactive cells and processes throughout the human entorhinal region and subjacent white matter was examined either by the unlabelled antibody-enzyme method or by the avidin-biotin method. The brain slices were obtained at autopsy with a short post-mortem delay. The majority of somatostatin immunoreactive nerve cells was found in the inner principal layer and subjacent white matter. In addition, individually scattered immunoreactive neurons were observed in both the outer principal layer and lamina dissecans. The immunoreactive perikarya varied in shape and ranged in size from 10 to 30 μm. Without exception the neurons could be classified as belonging to the group of non-pyramidal neurons. Each neuron gave rise to a few thick dendrites and a thin axon with a beaded appearance. In the adult human brain, the pattern formed by lipofuscin granules deposited in the nerve cells can be considered characteristic for the type of the neuron. Therefore, immunoreactive perikarya were documented, destained of chromogen and restained to demonstrate lipofuscin pigment and basophilic substance. It became evident from these studies that the previously immunoreactive cells were characterized by a large rounded and eccentrically located nucleus, sparse basophilic substance and, in most cases, a lack of lipofuscin granules. A few of the immunoreactive cells were laden with coarse pigment granules. The findings permit classification of entorhinal somatostatin-immunoreactive neurons as either non-pigmented or pigment-laden non-pyramidal neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1983) Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263–277

    Google Scholar 

  • Bakst I, Morrison JH, Amaral DG (1985) The distribution of somatostatin-like immunoreactivity in the monkey hippocampal formation. J Comp Neurol 236:423–442

    Google Scholar 

  • Bennett-Clarke C, Romagnano MA, Joseph SA (1980) Distribution of somatostatin in the rat brain: telencephalon and diencephalon. Brain Res 188:473–486

    Google Scholar 

  • Berube GR, Powers MM, Kerkay J, Clark G (1966) The gallocyanin chrome alum stain; influence of methods of preparation on its activity and separation of active staining compound. Stain Technol 41:73–81

    Google Scholar 

  • Bouras C, Magistretti PJ, Morrison JH (1986) An immunohistochemical study of six biologically active peptides in the human brain. Human Neurobiol 5:213–226

    Google Scholar 

  • Braak E, Braak H, Weindl A (1985) Somatostatin-like immunoreactivity in non-pyramidal neurons of the human isocortex. Anat Embryol 173:237–246

    Google Scholar 

  • Braak H (1972) Zur Pigmentarchitektonik der Großhirnrinde des Menschen. 1. Regio entorhinalis. Z Zellforsch 127:407–438

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V, Barlow HB, Bizzi E, Florey E, Grüsser OJ, Van der Loos H (eds) Studies of brain function, vol 4. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Braak H (1984) Architectonics as seen by lipofuscin stains. In: Peters A, Jones EG (eds) Cerebral cortex. Cellular components of the cerebral cortex, vol 1. Plenum Press, New York London, pp 59–104

    Google Scholar 

  • Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer's disease. Acta Neuropathol 68:325–332

    Google Scholar 

  • Braak H, Braak E (1986) Ratio of pyramidal cells versus non-pyramidal cells in the human frontal isocortex and changes in ratio with ageing and Alzheimer's disease. Prog Brain Res 70:185–212

    Google Scholar 

  • Chan-Palay V (1987) Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia. J Comp Neurol 260:201–223

    Google Scholar 

  • Epelbaum J (1986) Somatostatin in the central nervous system: physiology and pathological modifications. Prog Neurobiol 27:63–100

    Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex. Cellular components of the cerebral cortex, vol 1. Plenum Press, New York London, pp 123–200

    Google Scholar 

  • Finley JCW, Maderdrut JL, Roger LJ, Petrusz P (1981) The immunocytochemical localisation of somatostatin-containing neurons in the rat central nervous system. Neuroscience 6:2173–2192

    Google Scholar 

  • Friederich-Ecsy B, Braak E, Braak H, Probst A, Weindl A (1986) Correlation of somatostatin-immunoreactivity with cell-type specific pigmentation patterns of nerve cells in the human entorhinal cortex. Neurosci Lett [Suppl] 26: S543

    Google Scholar 

  • Goldman-Rakic PS, Selemon LD, Schwartz ML (1984) Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719–743

    Google Scholar 

  • Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    Google Scholar 

  • Hendry HC, Jones EG, Emson PC (1984) Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 4:2497–2517

    Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    CAS  PubMed  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer's disease. Ann Neurol 20:472–481

    Google Scholar 

  • Johansson O, Hökfelt T, Elde RP (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13:265–339

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    CAS  PubMed  Google Scholar 

  • Köhler C, Chan-Palay V (1983) Somatostatin-like and vasoactive intestinal polypeptide-like immunoreactive cells and terminals in the retrohippocampal region of the rat. Anat Embryol 167:151–172

    Google Scholar 

  • Kosel KC, Van Hoesen GW, Rosene DI (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213

    Google Scholar 

  • Kostovic I, Rakic P (1980) Cytology and time of origin of interstital neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242

    Google Scholar 

  • Lin CS, Lu SM, Schmechel DE (1986) Glutamic acid decarboxylase and somatostatin immunoreactivities in rat visual cortex. J Comp Neurol 244:369–383

    Google Scholar 

  • McDonald JK, Parnavelas JG, Karamanlidis AN, Brecha N, Koenig JI (1982) The morphology and distribution of peptidecontaining neurons in the adult and developing visual cortex of the rat. I. Somatostatin. J Neurocytol 11:809–824

    Google Scholar 

  • McQuillan MT (1977) Somatostatin, vol 1. Churchill Livingstone, Edinburgh

    Google Scholar 

  • McQuillan MT (1980) Somatostatin, vol 2. Eden Press, Edinburgh

    Google Scholar 

  • McQuillan MT (1983) Somatostatin, vol 3. Eden Press, Edinburgh

    Google Scholar 

  • Mesulam MM (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818

    Google Scholar 

  • Moreau JP, DeFeudis FV (1987) Pharmacological studies of somatostatin and somatostatin-analogues: therapeutic advances and perspectives. Life Sci 40:419–437

    Google Scholar 

  • Nakane PK (1968) Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 16:557–560

    Google Scholar 

  • Oertel W, Schmechel DE, Mugnaini E, Tappaz ML, Koppin IJ (1981) Immunohistochemical localisation of glutamate decarboxylase in rat cerebellum with a new antiserum. Neuroscience 6:2715–2735

    Google Scholar 

  • Palkovits M (1978) Topography of chemically identified neurons in the central nervous system: a review. Acta Morphol Acad Sci Hung 26:211–290

    Google Scholar 

  • Palkovits M, Brownstein MJ (1985) Distribution of neuropeptides in the central nervous system using biochemical micromethods. In: Björklund A, Hökfelt T (eds) Handbook of Chemical Neuroanatomy, vol 4, part 1: GABA and Neuropeptides in the CNS. Elsevier, Amsterdam, pp 1–71

    Google Scholar 

  • Powers MM, Clark G, Darrow MA, Emmel VM (1960) Darrow red, a new basic dye. Stain Technol 35:19–21

    Google Scholar 

  • Ramon y Cajal S (1909/11) Histology du Système Nerveux de l'Homme et des Vertébrés (translated by Azoulay L). Maloine, Paris

  • Roberts GW, Woodhams PL, Polak JM, Crow TJ (1984) Distribution of neuropeptides in the limbic system of the rat: the hippocampus. Neuroscience 11:35–77

    Google Scholar 

  • Roberts GW, Crow JM, Polak JM (1985) Location of neuronal tangles in somatostatin neurones in Alzheimer's disease. Nature 314:92–94

    Google Scholar 

  • Rose M (1927a) Der Allocortex bei Tier und Mensch. I. Teil. J Psychol Neurol 34:1–111

    Google Scholar 

  • Rose M (1927b) Die sog Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol 34:261–401

    Google Scholar 

  • Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Großhirnrinde. In: Bumke O, Förster O (eds) Handbuch der Neurologie. Bd 1. Springer, Berlin Heidelberg New York, pp 588–778

    Google Scholar 

  • Sgonina K (1937) Zur vergleichenden Anatomie der Entorhinalund Präsubikularregion. J Psychol Neurol 48:56–163

    Google Scholar 

  • Sloviter RS, Nilaver G (1987) Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-and somatostatin-like immunoreactivity in the area dentata and hippocampus of the rat. J Comp Neurol 256:42–60

    Google Scholar 

  • Somogyi P, Takagi H (1982) A note on the use of picric acid-paraformaldehyde-glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience 7:1779–1784

    Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD, Nunzi LMG, Gorio A, Wu JY (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin-or cholecystokinin-immunoreactive material. J Neurosci 4:2590–2603

    Google Scholar 

  • Sorensen KV (1982) Somatostatin: localisation and distribution in the cortex and the subcortical white matter of human brain. Neuroscience 7:1227–1232

    Google Scholar 

  • Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, Bd 4/9. Springer, Berlin Heidelberg New York, pp 1–998

    Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Swanson LW, Köhler C (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6:3010–3023

    Google Scholar 

  • Van Hoesen GW, Pandya DN (1975a) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24

    Google Scholar 

  • Van Hoesen GW, Pandya DN (1975b) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39–59

    Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 175:1471–1473

    Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N (1975) Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res 95:25–38

    Google Scholar 

  • Van Hoesen GW, Hyman BT, Damasio AR (1986) Cell specific pathology in neural systems of the temporal lobe in Alzheimer's disease. Prog Brain Res 70:321–335

    Google Scholar 

  • Vincent SR, Johansson O, Hökfelt T, Meyerson B, Sachs C, Elde RP, Terenius L, Kimmel J (1982) Neuropeptide coexistence in human cortical neurons. Nature 298:65–67

    Google Scholar 

  • Vincent SR, McIntosh CHS, Buchan AMJ, Brown JC (1985) Central somatostatin systems revealed with monoclonal antibodies. J Comp Neurol 238:169–186

    Google Scholar 

  • Wall G (1972) Über die Anfärbung der Neurolipofuscine mit Aldehydfuchsinen. Histochemie 29:155–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. J. Lang, Würzburg, on the occasion of his 65th birthday

A portion of the results has been presented at the annual meeting of the European Neuroscience Association 1986 in Marseille, France (Friederich-Ecsy et al. 1986)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friederich-Ecsy, B., Braak, E., Braak, H. et al. Somatostatin-like immunoreactivity in non-pyramidal neurons of the human entorhinal region. Cell Tissue Res. 254, 361–367 (1988). https://doi.org/10.1007/BF00225808

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225808

Key words

Navigation