Skip to main content
Log in

Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Twin and family studies of normal variation in the human electroencephalogram (EEG) and event related potentials (ERPs) are reviewed. Most of these studies are characterized by small sample sizes. However, by summarizing these studies in one paper, we may be able to gain some insight into the genetic influences on individual differences in central nervous system functioning that may mediate genetically determined differences in behavior. It is clear that most EEG parameters are to a large extent genetically determined. The results for ERPs are based on a much smaller number of studies and suggest medium to large heritability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen P, Andersson S (1968) Physiological basis of the alpharhythm. Appleton-Century-Crofts, New York

    Google Scholar 

  • Anokhin A (1987) On the genetic nature of individual peculiarities of the whole-brain EEG organization. Psychol J 8:146–153

    Google Scholar 

  • Anokhin A, Steinlein O, Fischer C, Vogt P, Mao Y, Schalt E, Vogel F (1992) A genetic study of the human low-voltage electroencephalogram. Hum Genet 90:99–112

    Google Scholar 

  • Berger H (1929) Über das Electroencephalogramm des Menschen. Int Arch Psychiatry 87:527–570

    Google Scholar 

  • Boomsma D, Gabrielli W (1985) Behavioral genetic approaches to psychophysiological data. Psychophysiology 22:249–260

    Google Scholar 

  • Boomsma D, Molenaar P (1987) The genetic analysis of repeated measures. I. Simplex models. Behav Genet 17:111–123

    Google Scholar 

  • Boomsma D, Molenaar P, Dolan C (1991) Estimation of Individual genetic and environmental profiles in longitudinal designs. Behav Genet 21:243–255

    Google Scholar 

  • Bouchard T, Propping P (1993) Twins as a tool of behavioral genetics. Wiley, Chichester

    Google Scholar 

  • Bouchard T, Lykken D, McGue M, Segal N, Tellegen A (1990) Sources of human psychological differences: the Minnesota study of twins reared apart. Science 250:223–228

    CAS  PubMed  Google Scholar 

  • Buchsbaum M (1974) Average evoked response and stimulus intensity in identical and fraternal twins. Physiol Psychol 2:365–370

    Google Scholar 

  • Buchsbaum M (1993) Critical review of psychopathology in twins: structural and functional imaging of the brain. In: Bouchard T, Propping P (eds) Twins as a tool of behavioral genetics. Wiley, Chichester, pp 257–271

    Google Scholar 

  • Buchsbaum M, Landau S, Murphy D, Goodwin F (1973) Average evoked response in bipolar and unipolar affective disorders: relationship to sex, age of onset and monoamine oxidase. Biol Psychiatry 7:199–212

    Google Scholar 

  • Bulayeva K, Pavlova T, Guseynov G (1993) Visual evoked potentials: phenotypic and genotypic variability. Behav Genet 23:443–447

    Google Scholar 

  • Christian J, Li T, Norton J, Propping P, Yu P (1988) Alcohol effects on the percentage of beta waves in the electroencephalograms of twins. Genet Epidemiol 5:217–224

    Google Scholar 

  • Courchesne E (1978) Neurophysiological correlates of cognitive development: changes in long-latency event related potentials from childhood to adulthood. Electroencephalogr Clin Neurophysiol 45:468–482

    Google Scholar 

  • Courchesne E (1987) A neurophysiological view of autism. In: Schopler E, Mesibow G (eds) Neurobiological issues in autism. Plenum, New York London

    Google Scholar 

  • Davis H, Davis P (1936) Action potentials of the brain. Arch Neurol 36:1214–1224

    Google Scholar 

  • Dieker H (1967) Untersuchungen zur Genetik besonders regelmässiger hoher Alpha-Wellen im EEG des Menschen. Humangenetik 4:189–216

    Google Scholar 

  • Donchin E, Ritter W, McCallum W (1978) Cognitive psychophysiology: the endogenous components of the ERP. In: Callaway E, Teuting P, Koslow S (eds) Event-related brain potentials in man. Academic Press, New York, pp 349–411

    Google Scholar 

  • Duffy F, McAnulty G (1990) Neurophysiological heterogeneity and the definition of dyslexia: preliminary evidence for plasticity. Neurophysiologica 28:555–571

    Google Scholar 

  • Duffy F, Albert M, McAnulty G, Garvey J (1984) Age-related differences in brain electrical activity of healthy subjects. Ann Neurol 16:430–438

    Google Scholar 

  • Dumermuth G (1968) Variance spectra of electroencephalograms in twins. In: Kellaway P, Petersen I (eds) Clinical electroencephalography of children. Grune and Stratton, New York

    Google Scholar 

  • Dustman R, Beck E (1965) The visually evoked potential in twins. Electroencephalogr Clin Neurophysiol 19:570–575

    Google Scholar 

  • Eaves L, Eysenck H, Martin N (1989) Genes, culture and personality. An empirical approach. Academic press, London

    Google Scholar 

  • Elston R, Stewart C (1971) A general model for the genetic analysis of pedigrees. Hum Hered 21:523–542

    Google Scholar 

  • Fabiani M, Gratton G, Karis D, Donchin E (1987) Definition, identification, and reliability of measurement of the P300 component of the event-related brain potential. In: Ackles D, Jennings J, Coles M (eds) Advances in psychophysiology. JAI Press, Greenwich, pp 1–78

    Google Scholar 

  • Falconer D (1981) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • Ford J, Pfefferbaum A (1985) Age-related changes in ERPs. In: Ackles P, Jennings J, Coles M (eds) Advances in psychophysiology. JAI Press, New York, pp 301–339

    Google Scholar 

  • Gershon E, Buchsbaum M (1977) A genetic study of average evoked response augmentation/reduction in affective disorders. In: Shagass C, Gershon S, Friedhoff A (eds) Psychopathology and brain dysfunction. Raven, New York, pp 279–290

    Google Scholar 

  • Goldgar D (1990) Multipoint analysis of human quantitative genetic variation. Am J Hum Genet 47:957–967

    Google Scholar 

  • Gottlober A (1938) The inheritance of brain potential pattern. J Exp Psychol 22:193–200

    Google Scholar 

  • Haggard E (1958) Intraclass correlation and the analysis of variance. Dryden, New York Oxford

    Google Scholar 

  • Haseman J, Elston R (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19

    Google Scholar 

  • Heuschert D (1963) EEG-Untersuchungen an eineiigen Zwillingen im höheren Lebensalter. Z Menschl Vererbu Konstitutionslehre 37:128–172

    Google Scholar 

  • Hume W (1973) Physiological measures in twins. In: Claridge G, Canter S and Hume W (eds) Personality differences and biological variations: a study of twins. Pergamon, Oxford New York, pp 87–114

    Google Scholar 

  • John E, Ahn H, Prichep L, Treptin M, Kaye H (1980) Developental equations for the electroencephalogram. Science 210:1255–1258

    Google Scholar 

  • Juel-Nielsen N, Harvald B (1958) The electroencephalogram in uniovular twins brought up apart. Acta Genet 8:57–64

    Google Scholar 

  • Khoury M, Beaty T, Cohen B (1993) Fundamentals of genetic epidemiology. Oxford University Press, New York Oxford

    Google Scholar 

  • Kotchoubei B (1987) Human orienting reaction: the role of genetic and environmental factors in the variability of evoked potentials and autonomic components. Activ Nerv Sup 29:103–109

    Google Scholar 

  • Kuhlo W, Heintel H, Vogel F (1969) The 4–5 c/sec rhythm. Electroencephalogr Clin Neurophysiol 26:613–618

    Google Scholar 

  • Lennox W, Gibbs E, Gibbs F (1945) The brain-wave pattern, an hereditary trait: evidence from 74 “normal” pairs of twins. J Hered 31:233–243

    Google Scholar 

  • LeVay S (1993) The sexual brain. MIT Press, Cambridge, Mass

    Google Scholar 

  • Lewis E, Dustman R, Beck E (1972) Evoked response similarity in monozygotic, dizygotic and unrelated individuals: a comparative study. Electroencephalogr Clin Neurophysiol 32:309–316

    Google Scholar 

  • Linkowski P, Kerkhofs M, Hauspie R, Susanne C, Mendlewicz J (1989) EEG sleep patterns in man: a twin study. Electroencephalogr Clin Neurophysiol 73:279–284

    Google Scholar 

  • Lykken D (1982) Research with twins: the concept of emergenesis. Psychophysiology 4:361–373

    Google Scholar 

  • Lykken D, Tellegen A, Iacono W (1982) EEG spectra in twins: evidence for a neglected mechanism of genetic determination. Physiol Psychol 10:60–65

    Google Scholar 

  • Lykken D, Tellegen A, Thorkelson K (1974) Genetic determination of EEG frequency spectra. Biol Psychol 1:245–259

    Google Scholar 

  • Malykh S, Ravich-Shcherbo I (1986) Genotypical dependence of movement related brain potentials. In: Gallai V (ed) Maturation of the CNS and evoked potentials. Elsevier, Amsterdam, pp 247–252

    Google Scholar 

  • Martin N, Eaves L (1977) The genetical analysis of covariance structure. Heredity 38:79–95

    Google Scholar 

  • Matousek M, Petersen I (1973) Frequency analysis of the EEG in normal children and adolescents. In: Kellaway P, Petersen I (eds) Automation of clinical electroencephalography. Raven, New York, pp 75–102

    Google Scholar 

  • Merica H, Gaillard J (1985) Statistical description and evaluation of the interrelationships of standard sleep variables for normal subjects. Sleep 8:261–273

    Google Scholar 

  • Meshkova T, Ravich-Shcherbo I (1982) Influence of the genotype on the determination of individual features of the human EEG at rest. In: Schmidt H, Tembrock G (eds) Evolution and determination of animal and human behavior. VEB Deutscher Verlag der Wissenschaft, Berlin, pp 92–107

    Google Scholar 

  • Molenaar P, Roelofs J (1987) The analysis of multiple habituation profiles of single trial evoked potentials. Biol Psychol 24:1–21

    Google Scholar 

  • Molenaar P, Boomsma D, Neeleman D, Dolan C (1990) Using factor scores to detect GxE origin of “pure” genetic or environmental factors obtained in genetic covariance structure analysis. Genet Epidemiol 7:93–100

    Google Scholar 

  • Neale M, Cardon L (1992) Methodology for genetic studies of twins and families. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Nunez (1981) Electric fields of the brain. The neurophysics of EEG. Oxford University Press, New York Oxford

    Google Scholar 

  • O'Connor S, Morzorati S, Christian J, Li T-K (1994) Heritable features of the auditory oddball event-related potential: peaks, latencies, morphology and topography. Electroencephalogr Clin Neurophysiol 92:115–125

    Google Scholar 

  • Oken B, Chiappa K (1988) Short-term variability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 69:191–198

    Google Scholar 

  • Osborn R (1970) Heritability estimates for the visual evoked response. Life Sci 9:481–490

    Google Scholar 

  • Ott J (1991) Analysis of human linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pivik R, Broughton R, Coppola R, Davidson R, Fox N, Nuwer M (1993) Guidelines for the recording and quantitative analysis of electroencephalography activity in research contexts. Psychophysiology 30:547–558

    CAS  PubMed  Google Scholar 

  • Plomin R, Rende R (1991) Human behavioral genetics. Annu Rev Psychol 42

  • Polich J, Burns T (1987) P300 from identical twins. Neuropsychologica 25:299–304

    Google Scholar 

  • Polich J, Pollock V, Bloom F (1994) Meta-analysis of P300-amplitude from males at risk for alcoholism. Psychol Bull 115:55–73

    Google Scholar 

  • Pollock V, Schneider L, Lyness S (1991) Reliability of topographic quantitative EEG amplitude in healthy late-middle aged and elderly subjects. Electroencephalogr Clin Neurophysiol 79:20–26

    Google Scholar 

  • Propping P (1977) Genetic control of ethanol action on the central nervous system. An EEG study in twins. Hum Genet 35:309–344

    Google Scholar 

  • Propping P, Krüger J, Mark N (1981) Genetic disposition to alcoholism: an EEG study in alcoholics and their relatives. Hum Genet 59:51–59

    Google Scholar 

  • Raney E (1939) Brain potentials and lateral dominance identical twins. J Exp Psychol 24:21–39

    Google Scholar 

  • Rogers T, Deary I (1991) The P300 component of the auditory event-related potential in monozygotic and dizygotic twins. Acta Psychiatr Scand 83:412–416

    Google Scholar 

  • Rust J (1975) Genetic effects in the cortical auditory evoked potentials: a twin study. Electroencephalogr Clin Neurophysiol 39:321–327

    Google Scholar 

  • Salinsky M, Oken B, Morehead L (1991) Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392

    Google Scholar 

  • Schork N (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling. Am J Hum Genet 53:1306–1319

    Google Scholar 

  • Schreiter-Gasser U, Gasser T, Ziegler P (1993). Quantitative EEG analysis in early onset Alzheimer's disease: a controlled study. Electroencephalogr Clin Neurophysiol 86:15–22

    Google Scholar 

  • Segalowitz S, Barnes K (1993) The reliability of ERP components in the auditory oddball paradigm. Psychophysiology 30:451–459

    Google Scholar 

  • Sloan E, Fenton G (1993) EEG power spectra and cognitive change in geriatric psychiatry: a longitudinal study. Electroencephalogr Clin Neurophysiol 86:361–367

    Google Scholar 

  • Stassen H, Bomben G, Propping P (1987) Genetic aspects of the EEG: an investigation into the within-pair similarity of monozygotic and dizygotic twins with a new method of analysis. Electroencephalogr Clin Neurophysiol 66:489–501

    Google Scholar 

  • Stassen H, Lykken D, Bomben G (1988a) The within-pair EEG similarity of twins reared apart. Eur Arch Neurolog Sci 237:244–252

    Google Scholar 

  • Stassen H, Lykken D, Propping P, Bomben G (1988b) Genetic determination of the human EEG. Survey of recent results on twins reared together and apart. Hum Genet 80:165–176

    Google Scholar 

  • Steinlein O, Anokhin A, Yping M, Schalt E, Vogel F (1992) Localization of a gene for the human low-voltage EEG on 20q and genetic heterogeneity. Genomics 12:69–73

    Google Scholar 

  • Surwillo W (1977) Interval histograms of period of the electroencephalogram and the reaction time in twins. Behav Genet 7:161–170

    Google Scholar 

  • Surwillo W (1980) Cortical evoked potentials in monozygotic twins and unrelated subjects: comparisons of exogeneous and endogenous components. Behav Genet 10:201–209

    Google Scholar 

  • Sutcliffe J, Milner R (1984) Brain specific gene expression. Trends Biochem Sci 9:95–99

    Google Scholar 

  • Thatcher R (1992) Cyclic cortical reorganization during early childhood. Brain Cogn 20:24–50

    Google Scholar 

  • Thatcher R, Walker R, Giudice S (1987) Human cerebral hemispheres develop at different rates and ages. Science 236:1110–1113

    Google Scholar 

  • Vogel F (1958) Über die Erblichkeit des normalen Elektroenzephalogramms. Thieme, Stuttgart

    Google Scholar 

  • Vogel F (1962a) Ergänzende Untersuchungen zur Genetik des menschlichen Niederspannungs-EEG. Dtsch Z Nervenheilkd 184:105–111

    Google Scholar 

  • Vogel F (1962b) Untersuchungen zur Genetic der β-Wellen im EEG des Menschen. Dtsch Z Nervenheilkd 184:137–173

    Google Scholar 

  • Vogel F (1966a) Zur genetischen Grundlage fronto-präzentraler β-wellen-gruppen im EEG des Menschen. Humangenetik 2:227–237

    Google Scholar 

  • Vogel F (1966b) Zur genetischen Grundlage occipitaler langsamer β-Wellen im EEG des Menschen. Humangenetik 2:238–245

    Google Scholar 

  • Vogel F (1970) The genetic basis of the normal human electroencephalogram (EEG). Humangenetik 10:91–114

    Google Scholar 

  • Vogel F, Götze W (1959) Familienuntersuchungen zur Genetik des normalen Electroencephalogramms. Dtsch Z Nervenheilkd 178:668–700

    Google Scholar 

  • Vogel F, Motulsky A (1986) Human genetics: problems and approaches. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Vogel F, Schalt E, Krüger J, Propping P, Lehnert K (1979) The electroencephalogram (EEG) as a research tool in human behavior genetics: psychological examinations in healthy males with various inherited EEG variants. I. Rationale of the study; materials; methods. Heritability of test parameters. Hum Genet 47:1–15

    Google Scholar 

  • Vogel F, Krüger J, Höpp H-P, Schalt E, Schnobel R (1986) Visually and auditory evoked EEG potentials in carriers of four hereditary EEG variants. Hum Neurobiol 5:49–58

    Google Scholar 

  • Whitton J, Elgie S, Kugel H, Moldofsky H (1985) Genetic dependence of the electroencephalogram bispectrum. Electroencephalogr Clin Neurophysiol 60:293–298

    Google Scholar 

  • Wong P (1991) Introduction to brain topography. Plenum, New York London

    Google Scholar 

  • Young J, Lader M, Fenton G (1972) A twin study of the genetic influences on the electroencephalogram. J Med Genet 9:13–16

    Google Scholar 

  • Zuckerman M, Murtangh T, Siegel J (1974) Sensation seeking and cortical augmenting-reducing. Psychophysiology 11:535–542

    Google Scholar 

  • Zung W, Wilson W (1967) Sleep and dream patterns in twins: Markov analysis of a genetic trait. Recent Adv Biol Psychiatry 9:119–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beijsterveldt, C.E.M., Boomsma, D.I. Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Hum Genet 94, 319–330 (1994). https://doi.org/10.1007/BF00201587

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201587

Keywords

Navigation