Skip to main content
Log in

Sublocalization of von Willebrand factor pseudogene to 22q11.22–q11.23 by in situ hybridization in a 46,X,t(X;22)(pter;q11.21) translocation

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The von Willebrand factor pseudogene, previously mapped to chromosome 22, was sublocalized by in situ hybridization using as probe a von Willebrand factor cDNA fragment completely contained in the pseudogenic region. Chromosome spreads were from a patient carrying a unique balanced de novo translocation 46,X,t(X;22)(pter;q11.21). Silver grain analysis indicated that the human von Willebrand factor pseudogene is located on 22q11.22–q11.23, a region relevant for several somatic and constitutional chromosomal alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assouline Z, Kerbiriou-Nabias DM, Piétu G, Thomas N, Bahnak BR, Meyer D (1988) The human gene for von Willebrand factor. Identification of repetitive ALU sequences 5′ to the transcription initiation site. Biochem Biophys Res Commun 153:1159–1166

    Google Scholar 

  • Bonthron D, Orkin SH (1988) The human von Willebrand factor. Structure of the 5′ region. Eur J Biochem 171:51–57

    Google Scholar 

  • Calzolari E, Palazzi P, Aiello V, Mazzeo E, Perri P, Minelli A, Senno L del, Patracchini P, Bernardi F (1987) De novo autosomal translocation involving chromosomes 8, 13 and 15 in a girl with a sporadic retinoblastoma. Hum Genet 77:51–54

    Google Scholar 

  • Cannizzaro LA, Emanuel BS (1985) In situ hybridization and translocation breakpoint mapping. III. DiGeorge syndrome with partial monosomy of chromosome 22. Cytogenet Cell Genet 39:179–183

    Google Scholar 

  • Chandler ME, Yunis JJ (1978) A high resolution in in situ hybridization technique for the direct visualization of labeled early metaphase and prophase chromosomes. Cytogenet Cell Genet 22:352–356

    Google Scholar 

  • Collins CJ, Underdahl JP, Levene RB, Ravera CP, Morin MJ, Dombalagian MJ, Ricca G, Livingston DM, Lynch DC (1987) Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site. Proc Natl Acad Sci USA 84:4393–4397

    Google Scholar 

  • Ginsburg D, Handin RI, Bonthron DT, Donlon TA, Bruns GAP, Latt SA, Orkin SH (1985) Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones, and chromosomal localization. Science 228:1401–1406

    Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, Klein A de, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99

    Google Scholar 

  • Hermans A, Heisterkamp N, Lindern M von, Baal S van, Meijer D, Plas D van der, Wiedemann LM, Groffen J, Bootsma D, Grosveld G (1987) Unique fusion of bcr ad c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell 51:33–40

    Google Scholar 

  • Kaplan JC, Emanuel E (1988) Report of the committee on the genetic constitution of chromosome 22. (Human Gene Mapping 9.5: update to the 9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 49:104–106

    Google Scholar 

  • Keitges EA, Palmer CG (1986) Analysis of spreading of inactivation in eight X autosome translocations utilizing the high resolution RBG technique. Hum Genet 72:231–236

    Google Scholar 

  • Kidd KK, Bowcock AM, Pearson PL, Schmidtke J, Willard HF, Track RK, Ricciuti F (1988) Report of the committee on human gene mapping by recombinant DNA techniques. (Human Gene Mapping 9.5: update to the 9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 49:132–218

    Google Scholar 

  • Klein A de, Agthoven T van, Groffen C, Heisterkamp N, Groffen J, Grosveld G (1986) Molecular analysis of both translocation products of a Philadelphia-positive CML patient. Nucleic Acids Res 14:7071–7081

    Google Scholar 

  • Lynch DC, Zimmermann TS, Collins CJ, Brown M, Morin MJ, Ling EH, Livingston DM (1985) Molecular cloning of cDNA for human von Willebrand factor: authentication by a new method. Cell 41:49–56

    Google Scholar 

  • Marchetti G, Sacchi E, Patracchini P, Randi AM, Sampietro M, Bernardi F (1989) Two additional TaqI RFLPs in von Willebrand factor gene (VWF) and pseudogene. Nucleic Acids Res 17:3329

    Google Scholar 

  • Mattei MG, Mattei JF, Ayme S, Giraud F (1982) X-autosome translocations: cytogenetic characteristics and their consequences. Hum Genet 61:295–309

    Google Scholar 

  • McAlpine PJ, Boucheix C, Pakstis AJ, Stranc LC, Berent TG, Shows TB (1988) The 1988 catalog of mapped genes and report of the nomenclature committee. (Human Gene Mapping 9.5: update to the 9th International Workshop on Human Gene Mapping) Cytogenet Cell Genet 49:4–38

    Google Scholar 

  • Meese E, Blin N, Zang KD (1987) Loss of heterozygosity and the origin of meningioma. Hum Genet 77:349–351

    Google Scholar 

  • Patracchini P, Aiello V, Palazzi P, Calzolari E, Bernardi F (1989) Sublocalization of the human protein C gene on chromosome 2q13–q14. Hum Genet 81:191–192

    Google Scholar 

  • Perry P, Wolff S (1974) New Giemsa method for the different staining of sister chromatids. Nature 251:156–158

    Google Scholar 

  • Sadler JE, Shelton-Inloes BB, Sorace JM, Harlan JM, Titani K, Davie EW (1985) Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci USA 82:6394–6398

    Google Scholar 

  • Schinzel A (1984) Catalogue of unbalanced chromosome aberrations in man. de Gruyter, Berlin New York, pp 718–746

    Google Scholar 

  • Seabright MA (1971) A rapid banding technique for human chromosomes. Lancet II:971–972

    Google Scholar 

  • Seizinger BR, Martuza RL, Gusella JF (1986) Loss of genes on chromosome 22 in tumorigenesis of human acustic neuroma. Nature 322:644–647

    Google Scholar 

  • Shelton-Inloes BB, Chehab FF, Mannucci PM, Federici AB, Sadler JE (1987) Gene deletions correlate with the development of alloantibodies in von Willebrand disease. J Clin Invest 79:1459–1465

    Google Scholar 

  • Steel HV, Sakariassen KS, Groot PHG de, Maurik JA van, Sixma JJ (1985) Von Willebrand factor in the vessel wall mediates platelets adherence. Blood 65:85–90

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Google Scholar 

  • Verweij CL, Vries CJM de, Distel B, Zonneveld AJ van, Kessel AG van, Mourik JA van, Pannekoek H (1985) Construction of cDNA coding for human von Willebrand factor using antibody probes for colony screening and mapping of the chromosomal gene. Nucleic Acids Res 13:4699–4717

    Google Scholar 

  • Weiss HJ, Sussman II, Hoyer LW (1977) Stabilization of the factor VIII in plasma by the von Willebrand factor. J Clin Invest 60:390–394

    Google Scholar 

  • Wilson GN, Baker DL, Schau J, Parker J (1984) Cat eye syndrome owing to tetrasomy 22pter→q11. J Med Genet 21:60–63

    Google Scholar 

  • Yunis JJ (1976) High resolution of human chromosomes. Science 191:1268–1270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patracchini, P., Calzolari, E., Aiello, V. et al. Sublocalization of von Willebrand factor pseudogene to 22q11.22–q11.23 by in situ hybridization in a 46,X,t(X;22)(pter;q11.21) translocation. Hum Genet 83, 264–266 (1989). https://doi.org/10.1007/BF00285168

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285168

Keywords

Navigation