Skip to main content
Log in

Gene isolation inArabidopsis thaliana by conditional overexpression of cDNAs toxic toSaccharomyces cerevisiae: identification of a novel early response zinc-finger gene

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

In an effort to identify novel regulatory plant genes, conditional overexpression of toxicArabidopsis thaliana gene products inSaccharomyces cerevisiae was evaluated as a genetic selection scheme. The screening method was tested on a fraction of a cDNA expression library and led to the identification of two Arabidopsis cDNA clones that were toxic to yeast; one corresponded to histone H1 and the other to a previously unidentified gene. This new gene, namedATL2, combines a RING-like zinc-binding motif and a putative signal anchor sequence for membrane insertion in the same molecule. Furthermore, inspection of the 3′ untranslated region reveals two types of sequences which appear to be key determinants in rapid transcript decay. Indeed, rapid and transient accumulation of transcript occurs in the presence of a protein synthesis inhibitor and of the growth regulator auxin. These features provide evidence thatATL2 is an early-response gene. Thus,ATL2 represents one of the first early-response plant genes to be described which possesses a distinct regulatory domain; the fact thatATL2 mRNA is induced by auxin suggests that it might have a role during the response of plants to this growth regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel S, Oeller PW, Theologies A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330

    PubMed  Google Scholar 

  • Abel S, Nguyen MD, Chow W, Theologis A (1995)ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase inArabidopsis thaliana. J Biol Chem 270:19093–19099

    PubMed  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ (1992) Functional expression of a probableArabidopsis thaliana potassium channel inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1993) Current protocols in molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Barlow PN, Luisi B, Milner A, Elliot M, Everett R (1994) Structure of the C3HC4 domain by1H-nuclear magnetic resonance spectroscopy. J Mol Biol 237:201–211

    PubMed  Google Scholar 

  • Bender J, Fink GR (1994) AFC1, a LAMMER kinase fromArabidopsis thaliana, activates STE12-dependent processes in yeast. Proc Natl Acad Sci USA 91:12105–12109

    PubMed  Google Scholar 

  • Berger SL, Piña B, Silverman N, Marcus GA, Agapite J, Regier JL, Triezenberg SL, Guarente L (1992) Genetic isolation of ADA2: a potential transcriptional adaptor required for function of certain acid activation domains. Cell 70:251–265

    PubMed  Google Scholar 

  • Borden KLB, Boddy MN, Lally J, O'Reilly NJ, Martin S, Howe K, Solomon E, Freemont PS (1995) The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14:1532–1541

    PubMed  Google Scholar 

  • Botstein D, Fink GR (1988) Yeast: an experimental organism for modern biology. Science 240:1439–1443

    PubMed  Google Scholar 

  • Bouchard ML, Côte S (1993) TheDrosophila melanogaster developmental genegl encodes a variant zinc-finger-motif protein. Gene 125:205–209

    PubMed  Google Scholar 

  • Bowler C, Chua N-H (1994) Emerging themes of plant signal transduction. Plant Cell 6:1529–1541

    PubMed  Google Scholar 

  • Burke D, Gasdaska P, Hartwell L (1992) Dominant effects of tubulin overexpression inSaccharomyces cerevisiae. Mol Cell Biol 9:1048–1059

    Google Scholar 

  • Certa U, Colavito-Shepanski M, Grunstein M (1984) Yeast may not contain histone H1: the only known ‘histone-like’ protein inSaccharomyces cerevisiae is a mitochondrial protein. Nucleic Acids Res 12:7975–7985

    PubMed  Google Scholar 

  • Colicelli J, Nicolette C, Birchmeier C, Rodgers L, Riggs M, Wigler M (1991) Expression of three mammalian cDNAs that interfere with RAS function inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 88:2913–2917

    PubMed  Google Scholar 

  • Church GM, Gilbert WG (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    PubMed  Google Scholar 

  • Deng X-W, Matsui M, Wei N, Wagner D, Chu AM, Feldmann KA, Quail PH (1992)COP1, anArabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and Gβ homologous domain. Cell 71:791–801

    PubMed  Google Scholar 

  • Elledge SJ, Mulligan JT, Ramer SW, Spottswood M, Davis RW (1991)λYES: A multifunctional cDNA expression vector for the isolation of genes by complementation of yeast andEscherichia coli mutations. Proc Natl Acad Sci USA 88:1731–1735

    PubMed  Google Scholar 

  • Espinet C, Torre MAdl, Aldea M, Herrero E (1995) An efficient method to isolate yeast genes causing overexpression-mediated growth arrest. Yeast 1145:25–32

    Google Scholar 

  • Estruch F, Carlson M (1993) Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant ofSaccharomyces cerevisiae. Mol Cell Biol 13:3872–3881

    PubMed  Google Scholar 

  • Freemont PS, Hanson IM, Trowsdale J (1991) A novel cysteine-rich sequence motif. Cell 64:483–484

    PubMed  Google Scholar 

  • Frommer WB, Ninnemann O (1995) Heterologous expression of genes in bacterial, fungal, animal and plant cells. Annu Rev Plant Physiol Plant Mol Biol 46:419–444

    Google Scholar 

  • Gantt SG, Lenvik TR (1991)Arbidopsis thaliana H1 histones. Analysis of two members of a small gene family. Eur J Biochem 202:1029–1031

    PubMed  Google Scholar 

  • Gietz D, Jean AS, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    PubMed  Google Scholar 

  • Gil P, Liu Y, Orbovic V, Verkamp E, Poff KL, Green PJ (1994) Characterization of the auxin-inducibleSAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol 104:777–784

    PubMed  Google Scholar 

  • Guilfoyle TJ (1986) Auxin-regulated gene expression in higher plants. CRC Crit Rev Plant Sci 4:247–276

    Google Scholar 

  • Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Academic Press, San Diego

    Google Scholar 

  • Hartmann E, Rapoport TA, Lodish HF (1989) Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci USA 86:5786–7590

    PubMed  Google Scholar 

  • Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319

    PubMed  Google Scholar 

  • Jones JS, Weber S, Prakash L (1988) TheSaccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinger finger domains for nucleic binding and a putative nucleotide binding sequence. Nucleic Acids Res 16:7119–7131

    PubMed  Google Scholar 

  • Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VS, Dmitrovsky E, Evans RM (1991) Chromosomal translocationt(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell 66:663–674

    PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    PubMed  Google Scholar 

  • Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993)Arabidopsis auxin-resistance geneAXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364:161–164

    PubMed  Google Scholar 

  • Linder C, Thoma F (1994) Histone H1 expressed inSaccharomyces cerevisiae binds to chromatin and affects survival, growth, transcription, and plasmid stability but does not change nucleosomal spacing. Mol Cell Biol 14:2822–2835

    PubMed  Google Scholar 

  • Liu H, Krizek J, Bretscher A (1992) Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 132:665–673

    PubMed  Google Scholar 

  • Marcus GA, Silverman N, Berger SL, Horiuchi J, Guarente L (1994) Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J 13:4807–4815

    PubMed  Google Scholar 

  • McClure BA, Guilfoyle TJ (1987) Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol 9:611–623

    Google Scholar 

  • McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239

    PubMed  Google Scholar 

  • McDowell Mj, Huang S, McKinney EC, An Y-Q, Meagher, RB (1996) Structure and evolution of the actin gene family inArabidopsis thaliana. Genetics 142:587–602

    PubMed  Google Scholar 

  • Miki Y et al. (1994) A strong candidate for the breast and ovarian cancer suceptivility geneBRCA1. Science 266:66–71

    PubMed  Google Scholar 

  • Miseloshev G, Venkov P, Holde Kv, Zlatanova J (1994) Low levels of exogenous histone H1 in yeast cause cell death. Proc Natl Acad Sci USA 91:11567–11570

    PubMed  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    PubMed  Google Scholar 

  • Nasr F, Bertauche N, Dufour ME, Minet M, Lacroute F (1994) Heterospecific cloning ofArabidopsis thaliana cDNAs by direct complementation of pyrimidine auxotrophic mutants ofSaccharomyces cerevisiae. I. Cloning and sequence analysis of two cDNAs catalysing the second, fifth and sixth steps of the de novo pyrimidine biosynthesis pathway. Mol Gen Genet 244:23–32

    PubMed  Google Scholar 

  • Newman TC, Ohme-Takagi M, Taylor CB, Green PJ (1993) DST sequences, highly conserved among plantSAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell 5:701–714

    PubMed  Google Scholar 

  • Ohme-Takagi M, Taylor CB, Newman TC, Green PJ (1993) The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci 90:11811–11815

    PubMed  Google Scholar 

  • Perry LJ, Rixon FJ, Everett RD, Frame MC, McGeoch DJ (1986) Characterization of theIE110 gene of herpes simplex virus type 1. J Gen Virol 67:2365–2380

    PubMed  Google Scholar 

  • Ramer SW, Elledge SJ, Davis RW (1992) Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. Proc Natl Acad Sci USA 89:11589–11593

    PubMed  Google Scholar 

  • Robinson LC, Tatchell K (1990) TFS1: a suppresor ofcdc25 mutations inSaccharomyces cerevisiae. Mol Gen Genet 230:241–250

    Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sachs AB (1993) Messenger RNA degradation in eukaryotes. Cells 74:413–421

    Google Scholar 

  • Schuler MA, Zielinski RE (1989) Methods in plant molecular biology. Academic Press, San Diego

    Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1993) TheHAT-4 gene ofArabidopsis encodes a developmental regulator. Genes Dev 7:367–379

    PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA inSaccharomyces cerevisiae. Genetics 122:19–27

    PubMed  Google Scholar 

  • Surdej P, Rield A, Jacobs-Lorena M (1994) Regulation of mRNA stability in development. Annu Rev Genet 28:263–282

    PubMed  Google Scholar 

  • Tague BW, Goodman HM (1995) Characterization of a family ofArabidopsis zinc finger protein cDNAs. Plant Mol Biol 28:267–279

    PubMed  Google Scholar 

  • Takatduji H, Nakamura N, Katsumoto Y (1994) A new family of zinc finger proteins inPetunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell 6:947–958

    PubMed  Google Scholar 

  • Theologis A (1986) Rapid gene regulation by auxin. Annu Rev Plant Physiol 37:407–438

    Google Scholar 

  • Thomas GJ, Rothstein R (1989) The genetic control of direct-repeat recombination inSaccharomyces: the effect ofrad52 andrad1 on mitotic recombination atGAL10, a transcriptionally regulated gene. Genetics 69:725–738

    Google Scholar 

  • Tugendreich S, Bassett DE, McKusick VA, Boguski MS, Hieter P (1994) Genes conserved in yeast and humans. Human Mol Genet 3:1509–1517

    Google Scholar 

  • van der Zaal EJ, Droog FNJ, Boot CJM, Hensgens LAM, Hoge JHC, Schilperoort RA, Libbenga KR (1991) Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol 16:983–998

    PubMed  Google Scholar 

  • Wang X, Sato R, Brown MS, Hua X, Goldstein JL (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62

    PubMed  Google Scholar 

  • Yamamoto KT, Mori H, Imaseki H (1992) cDNA cloning of indole-3-acetic acid-regulated genes: Aux22 and SAUR from mung bean (Vigna radiata) hypocotyl tissue. Plant Cell Physiol 33:93–97

    Google Scholar 

  • Zlatanova J (1990) Histone H1 and the regulation of transcription of eukaryotic genes. Trends Biochem Sci 273–276

  • Zubiaga AM, Belasco JG, Greenberg ME (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15:2219–2230

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Jürgens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-García, M., Garcidueñas-Piña, C. & Guzmán, P. Gene isolation inArabidopsis thaliana by conditional overexpression of cDNAs toxic toSaccharomyces cerevisiae: identification of a novel early response zinc-finger gene. Molec. Gen. Genet. 252, 587–596 (1996). https://doi.org/10.1007/BF02172405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172405

Key words

Navigation