Skip to main content
Log in

Induction of streptomycin resistance in the wild tomato Lycopersicon peruvianum

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A protoplast mutagenesis and cell selection system was used for the isolation of streptomycin resistant Lycopersicon peruvianum colonies. Protoplasts were treated with the mutagen N-nitroso-methylurea and could be regenerated into fertile plants, carrying the streptomycin resistant character. Several classes of streptomycin resistance could be distinguished. Reciprocal crosses between streptomycin resistant and sensitive plants showed a non-Mendelian transmission of the resistance trait. Streptomycin resistance is the first selectable and maternally inherited cell organelle marker described in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlett SG, Harris EH, Grabowy CT (1979) Ribosomal subunits affected by antibiotic resistance mutations at seven chloroplast loci in Chlamydomonas reinhardtii. Mol Gen Genet 176:199–208

    Google Scholar 

  • Binding H, Nehls R (1977) Regeneration of isolated protoplasts to plants in Solanum dulcamara L. Z Pflanzenphysiol 85:279–280

    Google Scholar 

  • Binding H, Binding K, Straub J (1970) Selektion in Gewebekulturen mit haploiden Zellen. Naturwissenschaften 57:138–139

    Google Scholar 

  • Caboche M, Muller JF (1980) Use of a medium allowing low cell density growth for in vitro selection experiments: isolation of valine resistant clones from nitrosoguanidine-mutagenized cells and gamma-irradiated tobacco plants. In: Sala F, Parisi B, Cella R, Ciferri O (eds) Plant cell cultures: results and perspectives. Elsevier, Amsterdam, pp 133–138

    Google Scholar 

  • Cseplo A, Maliga P (1982) Lincomycin resistance, a new type of maternally inherited mutation in Nicotiana plumbaginifolia. Curr Genet 6:105–109

    Google Scholar 

  • Cseplo A, Maliga P (1984) Large scale isolation of maternally inherited lincomycin resistance mutations in diploid Nicotiana plumbaginifolia protoplast cultures. Mol Gen Genet 196:407–412

    Google Scholar 

  • Cseplo A, Etzold T, Schell J, Schreier PH (1988) Point mutations in the 23 S rRNA genes of four lincomycin resistant Nicotiana plumbaginifolia mutants could provide new selectable markers for chloroplast transformation. Mol Gen Genet 214:295–299

    Google Scholar 

  • Davis BD, Tai P-C, Wallace BJ (1974) Complex interactions of antibiotics with the ribosome. In: Nomura M, Tissieres A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 771–791

    Google Scholar 

  • Dix PJ, Joo F, Maliga P (1977) A cell line of Nicotiana sylvestris with resistance to kanamycin and streptomycin. Mol Gen Genet 157:285–290

    Google Scholar 

  • Edwards D (1980) Antimicrobial drug action. Macmillan, London, pp 193–216

    Google Scholar 

  • Etzold T, Fritz CC, Schell J, Schreier PH (1987) A point mutation in the chloroplast 16 S rRNA gene of a streptomycin resistant Nicotiana tabacum. FEBS Lett 219:343–346

    Google Scholar 

  • Fluhr R, Aviv D, Galun E, Edelman M (1985) Efficient induction and selection of chloroplast encoded antibiotic resistant mutations in Nicotiana. Proc Natl Acad Sci USA 82:1485–1489

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protopiasts. Dev Biol 33:130–137

    Google Scholar 

  • Fromm H, Edelman M, Aviv D, Galun E (1987) The molecular basis for rRNA-dependent spectinomycin resistance in Nicotiana chloroplasts. EMBO J 6:3233–3237

    Google Scholar 

  • Fromm H, Galun E, Edelman M (1989) A novel site for streptomycin resistance in the “530 loop” of chloroplast 16S ribosomal RNA. Plant Mol Biol 12:499–505

    Google Scholar 

  • Funatsu G, Wittmann HG (1972) Ribosomal proteins XXXIII. Location of amino-acid replacements in protein S12 isolated from E. coli mutants resistant to streptomycin. J Mol Biol 68:547–550

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Google Scholar 

  • Gauthier A, Turmel M, Lemieux C (1988) Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: Evidence for a novel site of streptomycin resistance in the small subunit rRNA. Mol Gen Genet 214:192–197

    Google Scholar 

  • Gillham NW (1965) Induction of chromosomal and nonchromosomal mutations in Chlamydomonas reinhardi with N-methyl-Nnitro-N-nitrosoguadinine. Genetics 52:529–537

    Google Scholar 

  • Gorini L, Davies J (1968) The effect of streptomycin on ribosomal function. Curr Top Microbiol Immunol 44:100–122

    Google Scholar 

  • Hagemann R (1982) Induction of plastome mutations by nitrosourea compounds. In: Edelmann M, Hallick RB, Chua N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 119–127

    Google Scholar 

  • Hamill JD, Ahuja PS, Davey MR, Cocking EC (1986) Protoplast derived streptomycin resistant plants of the forage legume Onobrychis viciifolia Scop. (Scinfoin). Plant Cell Rep 5:439–441

    Google Scholar 

  • Harris EH, Boyton JE, Gillham NW, Tingle CL, Fox SB (1977) Mapping of chloroplast genes involved in chloroplast ribosome biogenesis in Chlamydomonas reinhardtii. Mol Gen Genet 155:249–265

    Google Scholar 

  • Hille J, Koornneef M, Ramanna MS, Zabel P (1989) Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica 42:1–23

    Google Scholar 

  • Hosticka LP, Hanson MR (1984) Induction of plastid mutations in tomatoes by nitrosomethylurea. J Hered 75:242–246

    Google Scholar 

  • Koornneef M, van Diepen JAM, Hanhart CJ, Kieboom-de Waart AC, Martinelli L, Schoenmakers HCH, Wijbrandi J (1989) Chromosomal instability of cell and tissue cultures of tomato haploids and diploids. Euphytica 43:179–186

    Google Scholar 

  • Lee RW, Jones RF (1973) Induction of Mendelian and non-Mendelian streptomycin resistant mutants during synchronous cell cycle of Chlamydomonas reinhardtii. Mol Gen Genet 121:99–108

    Google Scholar 

  • Lee RW, Gillham NW, Van Winkle KP, Boynton JE (1973) Preferential recovery of uniparental streptomycin resistant mutants from diploid Chlamydomonas reinhardtii. Mol Gen Genet 211:109–116

    Google Scholar 

  • Lemieux C, Lee RW (1987) Nonreciprocal recombination between alleles of the chloroplast 23S rRNA gene in interspecific Chlamydomonas crosses. Proc Natl Acad Sci USA 84:4166–4170

    Google Scholar 

  • Lemieux C, Turmel M, Seligy V, Lee RW (1984) Chloroplast DNA recombination in interspecific hybrids of Chlamydomonas: Linkage between a nonmendelian locus for streptomycin resistance and restriction fragments coding for 16 S rRNA. Proc Natl Acad Sci USA 81:1164–1168

    Google Scholar 

  • Maliga P (1981) Streptomycin resistance is inherited as a recessive mendelian trait in a Nicotiana sylvestris line. Theor Appl Genet 60:1–3

    Google Scholar 

  • Maliga P, Sz-Breznovits A, Marton L (1973) Streptomycin-resistant plants from callus culture of haploid tobacco. Nature New Biol 244:29–30

    Google Scholar 

  • Maliga P, Sz-Breznovits A, Marton L (1975) Non-Mendelian streptomycin resistant tobacco mutant with altered chloroplasts and mitochondria. Nature 255:401–402

    Google Scholar 

  • Maliga P, Sidorov VA, Cseplo A, Menczel L (1981) Induced mutations in advancing in vitro techniques. In: Proceedings of IAEA/FAO International Symposium on induced mutations as a tool in plant research. IAEA, Vienna, pp 339–352

    Google Scholar 

  • Marton L, Dung TM, Mendel RR, Maliga (1989) Nitrate reductase deficient cell lines from haploid protoplast cultures of Nicotiana plumbaginifolia. Mol Gen Genet 186:301–304

    Google Scholar 

  • McCabe PF, Timmons AM, Dix PJ (1989) A simple procedure for the isolation of streptomycin resistant plants in Solanaceae. Mol Gen Genet 216:132–137

    Google Scholar 

  • Melancon P, Lemieux C, Brakier-Gingras L (1988) A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 16:9631–9639

    Google Scholar 

  • Montandon PE (1985) Streptomycin resistance of Euglena gracilis chloroplasts: identification of a point mutation in the 16S rRNA gene in an invariant position. Nucleic Acids Res 13:4299–4310

    Google Scholar 

  • Montandon PE, Wagner R, Stutz E (1986) E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J 5:3705–3708

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Nicolas P (1981) Sensitivity of Euglena gracilis to chloroplast inhibiting antibiotics, and properties of antibiotic-resistant mutants. Plant Sci Lett 22:309–316

    Google Scholar 

  • Nitsch JP (1951) Experimental androgenesis in Nicotiana. Phytomorphology 19:389–404

    Google Scholar 

  • O'Connell MA, Hanson MR (1986) Regeneration of somatic hybrid plants formed between Lycopersicon esculentum and Solanum rickii. Theor Appl Genet 72:59–65

    Google Scholar 

  • O'Connell MA, Hanson MR (1987) Regeneration of somatic hybrid plants formed between Lycopersicon esculentum and L. pennellii. Theor Appl Genet 75:83–89

    Google Scholar 

  • Ozaki M, Mizushima S, Nomura M (1969) Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222:333–339

    Google Scholar 

  • Richardson KK, Richardson FC, Crosby RM, Swenberg JA, Skopek TR (1987) DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proc Natl Acad Sci USA 84:344–348

    Google Scholar 

  • Rick CM, Yoder JI (1988) Classical and molecular genetics of tomato — highlights and perspectives. Annu Rev Genet 22:281–300

    Google Scholar 

  • Rick CM, DeVerna JW, Chetelat RT, Stevens MA (1987) Potential contributions of wide crosses to improvement of processing tomatoes. Acta Hortic 200:45–55

    Google Scholar 

  • Sung ZR (1976) Mutagenesis of cultured plant cells. Genetics 84:51–57

    Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley, Reading

    Google Scholar 

  • Umiel N (1979) Streptomycin resistance in tobacco: III. A test on germinating seedlings indicates cytoplasmic inheritance in the St-R701 mutant. Z Pflanzenphysiol 92:295–301

    Google Scholar 

  • Umiel N, Goldner R (1976) Effects of streptomycin on diploid tobacco callus cultures and the isolation of resistant mutants. Protoplasma 89:83–89

    Google Scholar 

  • Weber G, Lark KG (1980) Quantitative measurement of the ability of different mutagens to induce an inherited change in phenotype to allow maltose utilization in suspension cultures of soybean. Genetics 96:213–222

    Google Scholar 

  • Wittmann HG, Wittmann-Liebold B (1974) Chemical structure of bacterial ribosomal proteins. In: Nomura M, Tissieres A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 115–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Hagemann

Communicated by R. Hagemann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, C.E., Snel, E.A.M., Akerboom, M.J.E. et al. Induction of streptomycin resistance in the wild tomato Lycopersicon peruvianum . Molec. Gen. Genet. 220, 261–268 (1990). https://doi.org/10.1007/BF00260492

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00260492

Key words

Navigation