Skip to main content
Log in

The paromomycin resistance mutation (par r-454) in the 15 S rRNA gene of the yeastSaccharomyces cerevisiae is involved in ribosomal frameshifting

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The leaky expression of the yeast mitochondrial geneoxi1, containing a frameshift mutation (+1), is caused by natural frameshift suppression, as shown previously (Fox and Weiss-Brummer 1980). A drastic decrease in the natural level of frameshifting is found in the presence of thepar r-454 mutation, localized at the 3′ end of the 15 S rRNA gene. This mutation causes resistance to the antibiotic paronomycin in the yeast strains D273-10B and KL14-4A (Li et al. 1982; Tabak et al. 1982). The results of this study imply that in the yeast strain 777-3A this mutation alone is sufficient for restriction of the level of natural frameshifting but is insufficient to confer resistance to paromomycin. A second mutation, arising spontaneously with a frequency of 10−4 leads, in combination with thepar r-454 mutation, to full paromomycin resistance in strain 777-3A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins JF, Gesteland RF, Reid BR, Anderson CW (1979) Normal tRNAs promote ribosomal frameshifting. Cell 18:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Avner PR, Coen D, Dujon B, Slonimski PP (1973) Mitochondrial genetics IV. Allelism and mapping studies of oligomycin resistant mutants inSaccharomyces cerevisiae. Mol Gen Genet 125:9–52

    Article  PubMed  CAS  Google Scholar 

  • Beauclerk AAD, Cundliffe E (1987) Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J Mol Biol 193:661–671

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Grivell LA (1978) The mitochondrial genome of yeast. Cell 15:705–723

    Article  PubMed  CAS  Google Scholar 

  • Bruce AG, Atkins JF, Gesteland RF (1986) tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding. Proc Natl Acad Sci USA 83:5052–5066

    Article  Google Scholar 

  • Coen D, Deutsch J, Netter P, Petrochilo E, Slonimski PP (1970) Control of organelle development. In: Miller PL (ed) Mitochondrial genetics, I Methodology and phenomenology. University Press, Cambridge, pp 449–496

    Google Scholar 

  • Craigen WJ, Caskey CT (1987) Translational frameshifting: where will it stop. Cell 50:1–2

    Article  PubMed  CAS  Google Scholar 

  • Douglas M, Butow RA (1976) Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA. Proc Natl Acad Sci USA 73:1083–1086

    Article  PubMed  CAS  Google Scholar 

  • Fox TD, Weiss-Brummer B (1980) Leaky +1 and −1 frameshift mutants at the same site in a yeast mitochondrial gene. Nature 288:60–63

    Article  PubMed  CAS  Google Scholar 

  • Gorini L (1974) Streptomycin and misreading of the genetic code. In: Nomura M, Tissieres A, Lengyel P (eds) Ribosomes. Cold Springer Habor Laboratory Monograph Series, Cold Spring Habor, New York, pp 791–803

    Google Scholar 

  • Haid A, Schweyen RJ, Kaudewitz F, Solioz M, Schatz G (1979) The mitochondrialcob region in yeast codes for apocytochrome b and is mosaic. Eur J Biochem 94:451–464

    Article  PubMed  CAS  Google Scholar 

  • Hüttenhofer A, Sakai H, Weiss-Brummer B (1988) Site-specific AT-cluster insertions in the mitochondrial 15 S rRNA gene of the yeastS. cerevisiae. Nucleic Acids Res 16:8665–8674

    PubMed  Google Scholar 

  • Hui AS, Eaton DH, de Boer HA (1988) Mutagenesis at the mRNA decoding site in the 16 S ribosomal RNA using the specialized ribosome system inEscherichia coli. EMBO J 7:4383–4388

    PubMed  CAS  Google Scholar 

  • Huysmans E, De Wachter R (1986) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 14:r73–118

    PubMed  CAS  Google Scholar 

  • Kotylak Z, Slonimski PP (1977) Mitochondrial mutants isolated by a new screening method based upon the use of the nuclear mutation op1. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Genetics and biogenesis of mitochondria. De Gruyter, Berlin, pp 83–89

    Google Scholar 

  • Kováč L, Lachowicz TM, Slonimski PP (1967) Biochemical genetics of oxidative phosphorylation. Science 158:1564–1567

    PubMed  Google Scholar 

  • Kutzleb R, Schweyen RJ, Kaudewitz F (1983) Extrachromosomal inheritance of paromomycin resistance. Mol Gen Genet 125:91–98

    Article  Google Scholar 

  • Li M, Tzagoloff A, Underbrink-Lyon K, Martin NC (1982) Identification of the paromomycin resistance mutation in the 15 S rRNA gene of yeast mitochondria. J Biol Chem 257:5921–5928

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambroock J (1982) Molecular cloning. A laboratory manual. Cold Spring Habor Laboratory, New York

    Google Scholar 

  • Martin RP, Bordonné R, Dirheimer G (1982) The paromomycin region in the yeast mitochondrial genome. In: Akoyunoglou (ed) Cell function and differentiation part B. Alan Liss, New York, pp 355–365

    Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321

    PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in the 16 S ribosomal RNA from attack by chemical probes. Cell 47:985–994

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in the 16 S ribosomal RNA. Nature 327:389–394

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Stern S, Noller HF (1986) Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol 187: 399–416

    Article  PubMed  CAS  Google Scholar 

  • Novitski CE, Macreadie IG, Maxwell RJ, Lukins HB, Linnane AW, Nagley P (1983) Biogenesis of mitochondria: Genetic and molecular analysis of theoli2 region of mitochondrial DNA. Curr Genet 8:135–146

    Article  Google Scholar 

  • Ofengand J, Ciesiolka J, Denman R, Nurse K (1986) Interactions of the tRNA-ribosome complex. In: Hardesty B, Kramer G (eds) Structure, function and genetics of ribosomes. Springer-Verlag, New York, pp 473–494

    Google Scholar 

  • Piepersberg W, Geyl D, Hummel H, Böck A (1980) Physiology and biochemistry of bacterial ribosomal mutants. In: Osawa S, Ozeki H, Uchida H, Yura T (eds) Genetics and evolution of RNA polymerase, tRNA and ribosomes. University of Tokyo Press, pp 359–377

  • Rigby PW, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  CAS  Google Scholar 

  • Ruusala T, Andersson D, Ehrenberg M, Kurland CG (1984) Hyper-accurate ribosomes inhibit growth. EMBO J 3:2575–2580

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Coulson AR, Barell BF, Smith AZH, Roe B (1980) Cloming in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143:161–178

    Article  PubMed  CAS  Google Scholar 

  • Sor F, Fukuhara H (1981) Nucleotide sequence of the small ribosomal RNA gene from the mitochondrial ofS. cerevisiae. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Habor Monograph 12. Cold Spring Habor, New York, pp 255–262

    Google Scholar 

  • Tabak HF, Van Der Laan JC, Langegent JE, Evers RF, Wassenaar GM (1982) Mitochondrially encoded resistance to paromomycin inSaccharomyces cerevisiae: reinvestigation of a controversy. Plasmid 8:261–275

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB, Gallant JA (1983) Mechanism of ribosome frameshifting during translation of the genetic code. Nature 302:389–393

    Article  PubMed  CAS  Google Scholar 

  • Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3′ end of the 16 S rRNA and the mRNA during elongation of protein synthesis inE. coli. EMBO J 7:1503–1507

    PubMed  CAS  Google Scholar 

  • Weiss-Brummer B, Guba R, Haid A, Schweyen RJ (1979) Fine structure ofoxi1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase. Curr Genet 1:75–83

    Article  CAS  Google Scholar 

  • Weiss-Brummer B, Sakai H, Kaudewitz F (1987) A mitochondrial frameshift-suppressor (+1) of the yeastS. cerevisiae maps in the mitochondrial 15 S rRNA locus. Curr Genet 11:295–301

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Gutell RR, Gupta R, Noller HF (1983) Detailed analysis of higher-order structure of 16 S-like ribosomal ribonucleic acids. Microbiol Rev 47:621–669

    PubMed  CAS  Google Scholar 

  • Wolf K, Dujon B, Slonimski PP (1973) Mitochondrial genetics. V. Multifactorial crosses involving a mutation conferring paramomycin-resistance inSaccharomyces cerevisiae. Mol Gen Genet 125:53–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C.P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss-Brummer, B., Hüttenhofer, A. The paromomycin resistance mutation (par r-454) in the 15 S rRNA gene of the yeastSaccharomyces cerevisiae is involved in ribosomal frameshifting. Molec. Gen. Genet. 217, 362–369 (1989). https://doi.org/10.1007/BF02464905

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02464905

Key words

Navigation