Skip to main content
Log in

In rhizobiaceae five different species are produced by rearrangements of one genome, induced by DNA-damaging agents

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

All bacterial strains classified into the family Rhizobiaceae can be induced to undergo a fundamental genome rearrangement. The special structure of their genome allows the formation of five distinctive phenotypes, each one adapted to a different habitat (Fig. 1).

This genome rearrangement can be induced by DNA-damaging agents, UV irridiation or chemical mutagenesis. For expression, cells have to be protected against photorepair and their replication has to be reduced by stress treatment. The rearrangement process is, with special exceptions, reversible. Classes I and II comprise Agrobacteria and Rhizobia, class III nitrogen-fixing strains and classes IV and V two different carotenoid-pigmented types. One of the class V strains has been shown to be an effective legume-symbiont. DNA characteristics and inter-class hybridization results show not only that the genomes are completely reconstructed during each step of rearrangement, but also that the bacteria of all five classes are genetically correlated. In many cases the genetic label has been maintained during rearrangement into the different classes. The identity of each class is protected by a class-specific restriction and modification system, which was analyzed by phage typing experiments and by functional analysis of class-specific restriction endonucleases. We propose to designate the classes as different species of Rhizobiaceae. The unidirectional rearrangement between nodulating Rhizobia and tumorgenic Agrobacteria has been interpreted as a sequence of decreasing complexity of genomic regions coding for the plant interactions of these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams MH (1959) Bacteriophages. Interscience Publ New York

    Google Scholar 

  • Almon L, Baldwin IL (1933) The stability of cultures of Rhizobium. J Bacteriol 26:229–250

    Google Scholar 

  • Berry JO, Atherly AG (1984) Induced plasmid-genome rearrangement in Rhizobium japonicum. J Bacteriol 157:218–224

    Google Scholar 

  • Böhm P (1983) Dichte-Analyse der DNA der Rhizobiaceae mit Hilfe der Malachitgrün-Chromatographie. Dipl-dissertation, Erlangen

  • Burkardt B, Burkardt HJ (1984) Visualization and exact molecular weight determination of Rhizobium meliloti megaplasmid. J Mol Biol 175:213–218

    Google Scholar 

  • Cold Spring Harbor Symp Quant Biol (1981) 45 Movable genetic elements

  • DeLey J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid DNA in bacteria. Plasmid 1:584–588

    Google Scholar 

  • Fincham JRS (1983) Genetics. Wright PSG Bristol London Boston p 549

    Google Scholar 

  • Franke P (1984) Die Charakterisierung des rot pigmentierten Rhizobiumstammes CB 376 durch bakteriologische und pflanzensymbiontische Merkmale. Dipl-dissertation, Erlangen

  • Hadley RG, Szalay AA (1982) DNA sequences homologous to the T DNA region of Agrobacterium tumefaciens are present in diverse Rhizobium species. Mol Gen Genet 188:361–369

    Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen über die Stick-stoffnahrung der Gramineen und Leguminosen. Beilagen Z Ver Rübenzucker Ind Dtsch Reiches, 234 pp

  • Heumann W (1962) Die Methodik der Kreuzung sternbildender Bakterien. Biol Zentralbl 81:341–354

    Google Scholar 

  • Heumann W (1979) Rhizobium lupini genetics. Curr Top Microbiol Immunol 88:1–23

    Google Scholar 

  • Heumann W (1981) Rhizobium genetics. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin Heidelberg, p 87

    Google Scholar 

  • Hooykaas PJJ, Peerbolte R, Regensburg-Tuink AJG, de Vries P, Schilperoort RA (1982) A chromosomal linkage map of Agro bacterium tumefaciens and a comparison with the maps of Rhizobium spp. Mol Gen Genet 188:12–17

    Google Scholar 

  • Iida S, Meyer J, Arber W (1983) Prokaryotic IS elements. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, Inc, pp 159–221

  • Klein EE (1983) Vergleichende Untersuchungen der strukturellen Organisation von Luzerneknöllchen, Pflanzentumoren und tumorähnlichen “Kalli”. Dipl-dissertation, Erlangen

  • Kleinig H, Broughton WJ (1982) Carotenoid pigments in a red strain of Rhizobium from Lotononis bainesii Baker. Arch Microbiol 133:164

    Google Scholar 

  • Kleinig H, Schmitt R (1982) On the biosynthesis of C30-carotenoic acid glucocyl esters in Pseudomonas rhodos. Analysis of car-mutants. Z Naturforsch 37:758–760

    Google Scholar 

  • Kleinig H, Heumann W, Meister W, Englert G (1977) Carotenoids of Rhizobia. I New carotenoids from Rhizobium lupini. Helv Chim Acta 60:254–258

    Google Scholar 

  • Kleinig H, Schmitt R, Meister W, Englert G, Thommen H (1979) New C30-carotenoic acid glucocyl esters from Pseudomonas rhodos. Z Naturforsch 34c:181–185

    Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29:11–22

    Google Scholar 

  • Matthews MM, Sistrom WR (1959) Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893

    Google Scholar 

  • Norris DO (1958) A red strain of Rhizobium from Lotononis bainesii Baker. Aust J Agric Res 9:629–632

    Google Scholar 

  • Prakash RK, Schilperoort RA (1982) Relationship between nif plasmids of fast-growing Rhizobium species and Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 149:1129–1134

    Google Scholar 

  • Priefer UB (1980) Das Insertionselement JSR1 aus Rhizobium lupini und seine mutagene Aktivität im Resistenzplasmid RP4. Drdissertation, Erlangen

  • Priefer UB, Burkardt HJ, Klipp W, Pühler A (1981) An insertion element isolated from the soil bacterium Rhizobium lupini. Cold Spring Harbor Quant Biol 45:87–91

    Google Scholar 

  • Rüger B (1984) IS-Elemente und Genomumstrukturierung bei Rhizobiaceae. Dr-dissertation, Erlangen

  • Ruvkun GB, Long SR, Meade HM, Ausubel FM (1981) Molecular genetics of symbiotic nitrogen fixation. Cold Spring Harbor Symp Quant Biol 45:492–499

    Google Scholar 

  • Singer CE, Ames BN (1970) Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–826

    Google Scholar 

  • Smith EF, Townsend CO (1907) Ein Pflanzentumor bakteriellen Ursprungs. Zentralbl Bakteriol Parasitenk Infektionskr Abt 2, 20:89–91

    Google Scholar 

  • Tannreuther C (1984) Wechselwirkung der Rhizobiaceae mit Pflanzen. Dipl-dissertation, Erlangen

  • Traeg E (1983) Charakterisierung von Phagen aus dem Rhizobium-Agrobacterium-Schema. Dipl-dissertation, Erlangen

  • Winkler KP (1983) Wirtskontrollierte Restriktions-und Modifikationssysteme bei Rhizobiaceae. Dr-dissertation, Erlangen

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heumann, W., Rösch, A., Springer, R. et al. In rhizobiaceae five different species are produced by rearrangements of one genome, induced by DNA-damaging agents. Mol Gen Genet 197, 425–436 (1984). https://doi.org/10.1007/BF00329939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329939

Keywords

Navigation