Skip to main content
Log in

Image analysis of cell proliferation and differentiation in the thymus of the newtPleurodeles waltlii Michah. by SAMBA 200 cell image processing

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The relationships between cell kinetics and nuclear transformations related to cell differentiation were investigated in the thymus of the newt by means of image analysis. A SAMBA 200 cell image processor was used to compute 18 densitometric, textural and morphological parameters on Feulgen-stained thymic nuclei from a few days after hatching of larvae (stage 40) to 1 month after metamorphosis (150 days old). During the first step, cell nuclei were automatically identified as lymphoid or epithelial with a 93.4%–98.7% confidence level when compared with the cytological diagnoses. During the second step, four cell classes were recognized in both epithelial and lymphoid cell populations and assumed to correspond toG 0,G 1,S andG 2 cell subpopulations, on the basis of both the nuclear DNA content and the chromatin pattern. The variations in the percentages of cells in these four classes, in addition to the evolution of growth fraction and cell number, indicate that the thymus is basically an exponentially growing epithelial bud, which reaches a steady state during metamorphosis. A few lymphoidG 0 stem cells penetrate the epithelial bud up to stage 42, enter theG 1 phase of the mitotic cycle, and give rise to lymphoblasts. Then, lymphoblast cells produce lymphocytes, which perform intensive proliferation until metamorphosis, while an increasing proportion of them leave the thymus. During metamorphosis, a steady state is reached in the lymphoid cell population as in the epithelial one, and statistically half the number of new lymphocytes emigrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartels PH, Bahr GF, Calhoum F, Wied GJ (1970) Cell recognition grouping techniques in TICAS. Acta Cytol 14:313–324

    PubMed  Google Scholar 

  • Bisconte JC (1979) Kinetic analysis of cellular populations by means of the quantitative radioantography. Int Rev Cytol 57:75–126

    PubMed  Google Scholar 

  • Brugal G (1976) Etude de la prolifération cellulaire et de sa régulation chez l'embryon âgé et la jeune larve du tritonPleurodeles waltlii Michah. Conception et réalisation d'un système automatique d'analyse microphotométrique des populations cellulaires. Thèse d'Etat, Université Grenoble

  • Brugal G (1981) L'analyse numérique des images cytologiques. ITBM 2:28–40

    Google Scholar 

  • Brugal G, Pelmont J (1975) Existence of two chalone-like substances in intestinal extract from the adult newt, inhibiting embryonic intestinal cell proliferation. Cell Tissue Kinet 8:171–187

    PubMed  Google Scholar 

  • Brugal G, Garbay C, Giroud F, Adelh D (1979) A double scanning microphotometer for image analysis: hardware, software and biomedical applications. J Histochem Cytochem 27:144–152

    PubMed  Google Scholar 

  • Charlemagne J (1977) Thymus development in Amphibians: Colonization of thymic endodermal rudiments by lymphoid stem-cells of mesenchymal origin in the UrodelePleurodeles waltlii Michah. Ann Immunol 128C:897–904

    Google Scholar 

  • Chassery JM (1980) Texture analysis of biological images using a computerized scanning microphotometer SAMBA. 3rd Int Conf Automat Diagn Cytol and Cell Image Anal Munich

  • Dean PN (1980) A simplified method of DNA distribution analysis. Cell Tissue Kinet 13:299–308

    PubMed  Google Scholar 

  • Deparis P, Jaylet A (1976) Thymic lymphocyte origin in the newtPleurodeles waltlii studied by embryonic grafts between diploid and tetraploid embryos. Ann Immunol 127C:827–831

    Google Scholar 

  • Diamond LW, Dennis DW, Rappaport H (1981) The relationship between lymphocyte nuclear morphology and cell cycle stage in lymphoid neoplasia. A J Hematol 11:165–173

    Google Scholar 

  • Durie GM, Salmon SE (1980) Cell Kinetic analysis of human tumor stem cells. In: Cloning of human tumor stem cells: 153–163, Liss, New York

    Google Scholar 

  • Durie GM, Vaught L, Chen YP, Olson GP, Salmon SE, Bartels PH (1978) Discrimination between human T and B lymphocytes and monocytes by computer analysis of digitized data from scanning microphotometry. I. Chromatin distribution pattern. Blood 51:579–589

    PubMed  Google Scholar 

  • Emptoz H, Terrenoire M, Tounissoux D (1978) Indetermination measure for a sequential identification process. Proc 4th Int conf Pattern Recogn: 262–264.

  • Gallien L, Durocher M (1957) Table chronologique du développement chezPleurodeles waltlii, Michah. Bull Biol Fr Belg 91:97–114

    Google Scholar 

  • Garbay C, Brugal G, Choquet C (1981) Application of colored image analysis to bone marrow cell recognition. Anal Quant Cytol 3:272–280

    PubMed  Google Scholar 

  • Giroud F (1982) Cell nucleus pattern analysis; geometric and densitometric featuring, automatic cell phase identification. Biol Cell 44:177–188.

    Google Scholar 

  • Goerttler K, Stöhr M (1982) Automated cytology. Arch Pathol Lab Med 106:657–661

    PubMed  Google Scholar 

  • Gray JW (1976) Cell-cycle analysis of perturbed cell populations: computer simulation of sequential DNA distributions. Cell Tissue Kinet 9:499–516

    PubMed  Google Scholar 

  • Gray JW, Dean PN (1980) Display and analysis of flow cytometric data. Ann Rev Biophys Bioeng 9:509–539

    Google Scholar 

  • Günzer U, Harms H, Haucke M, Aus H, TerMeulen V (1981) Computeraided image analysis for the differentiation analysis of mononuclear cells in peripheral blood smears from leukemic patients. Anal Quant Cytol 3:26–32

    PubMed  Google Scholar 

  • Jeanny JC (1980) Utilisation des caractéristiques morphométriques et densitométriques et du dénombrement des cellules cartilagineuses enG 0 etG 1 au cours du vieillissement et de la régéneration chezTriturus cristatus. Biol Cell 39:305–316

    Google Scholar 

  • Jeanny JC, Gontcharoff M (1978) Etude en microscopie et par cytophotométrie à balayage de la structure et de la distribution de la chromatine dans les noyaux des cellules cartilagineuses deTriturus cristatus âgé au cours de la régénération. Wilhelm Roux's Arch 184:195–211

    Google Scholar 

  • Johnston DA, White RA, Barlogie B (1978) Automatic processing and interpretation of DNA distributions: comparison of several techniques. Comp Biom Res 11:393–404

    Google Scholar 

  • Kendall FM, Wu CT, Giaretti W, Nicolini CA (1977) Multiparameter geometric and densitometric analyses of theG 0-G 1 transition of WI38 cells. J Histochem Cytochem 25:724–729

    PubMed  Google Scholar 

  • Kiefer G, Kiefer R, Moore GW, Salm R, Sandritter W (1974) Nuclear images of cells in different functional states. J Histochem Cytochem 22:569–576

    PubMed  Google Scholar 

  • Moustafa Y, Chibon P (1982a) Etude morphométrique du thymus chez l'AmphibienPleurodeles waltlii Michah. Etude histologique et dénombrement des cellules. Arch Anat Micr Morphol Exp 71:1–13

    Google Scholar 

  • Moustafa Y, Chibon P (1982b) Thymic cell populations in Amphibia: Quantitative study of the growth, stability, and regression of the cell populations in the thymus of the newtPleurodeles waltlii Michah. Wilhelm Roux's Arch 191:309–319

    Google Scholar 

  • Moustafa Y, Chibon P (1982c) Etude cinétique de la prolifération cellulaire dans le thymus d'Amphibien. Relation avec la différenciation cellulaire. Arch Anat Micr Morphol Exp 71:213–225

    Google Scholar 

  • Nicolini CA, Kendall F, Giaretti W (1977) Objective identification of cell cycle phases and subphases by automated image analysis. Biophys J 19:163–176

    PubMed  Google Scholar 

  • Pressman NJ (1976) Markovian analysis of cervical cell images. J Histochem Cytochem 24:138–144

    PubMed  Google Scholar 

  • Roti Roti JL, Okada SA (1973) Mathematical model of the cell cycle of L 5178 Y. Cell Tissue Kinet 6:111–124

    PubMed  Google Scholar 

  • Rowinski J, Pienkowski M, Abramczuk J (1972) Area representation of optical density of chromatin in resting and stimulated lymphocytes as measured by means of Quantimet. Histochemie 32:75–80

    PubMed  Google Scholar 

  • Sawicki W, Rowinski J, Swenson R (1974) Change of chromatin morphology during the cell cycle detected by means of automated image analysis. J Cell Physiol 84:423–428

    PubMed  Google Scholar 

  • Terrenoire M, Tounissoux D (1979) Processus non arborescent pour la reconnaissance d'une variable continue. 2ème Congrès AFCET-IRIA Reconnaissance des formes et intelligence artificielle, Toulouse, 2:410–417

    Google Scholar 

  • Tochinai S (1978) Thymocytes stem cell inflow inXenopus laevis after grafting diploid thymic rudiments into triploid tadpoles. Dev Compar Immunol 2:627–635

    Google Scholar 

  • Volpe EP, Robert T, Reinschmidt D (1977) Experimental studies on the embryonic derivation of thymic lymphocytes. In: Soloman JB, Horton JD (eds) Dev Immunol 5–9:109–114

  • Volpe EP, Robert T, Reinschmidt D (1979) Clarification of studies on the origin of thymic lymphocytes. J Exp Zool 208:57–66

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustafa, Y., Brugal, G. Image analysis of cell proliferation and differentiation in the thymus of the newtPleurodeles waltlii Michah. by SAMBA 200 cell image processing. Wilhelm Roux' Archiv 193, 139–148 (1984). https://doi.org/10.1007/BF00848889

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00848889

Key words

Navigation