Skip to main content
Log in

Properties of cells from inverted embryos ofXenopus laevis investigated by scanning electron microscopy

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

Xenopus embryos held inverted from the one cell stage show a partial reversal of the pattern of cleavage: the blastocoel forms towards the new upper pole, and the non-pigmented cells forming the blastocoel roof are smaller than normal endoderm cells. Two properties of the cells from inverted embryos have been studied: their capacity to form cilia when cultured for 48 h, normally a property of ectoderm cells; and their scanning electron microscopical appearance when isolated and cultured for shorter periods, which differs for normal ectoderm and endoderm cells. Groups of the upper, non-pigmented cells from inverted embryos do not form cilia in a longerterm culture, whereas groups of the lower, pigmented cells do. In contrast, the scanning electron microscopical appearance of the upper, non-pigmented cells of inverted embryos is more like that of normal ectoderm cells; the appearance of lower, pigmented cells is more like that of normal endoderm. Thus the determination to form cilia is not reversed by inversion, whereas the control of cell morphology is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bluemink JG, Hoperskaya OA (1975) Ultrastructural evidence for the absence of premelanosomes in eggs of the albino mutant (ap) ofXenopus laevis. Wilhelm Roux's Archives 177:75–79

    Google Scholar 

  • Brachet J (1977) An old enigma: the gray crescent of amphibian eggs. Curr Top Dev Biol 11:133–186

    PubMed  Google Scholar 

  • Curtis A (1962) Morphogenetic interactions before gastrulation in the amphibian,Xenopus laevis—the Cortical Field. J Embryol Exp Morphol 10:410–422

    PubMed  Google Scholar 

  • England MA, Wakely J (1979) Evidence for changes in cell shape from a 2-dimensional to a 3-dimensional substrate. Experientia 35:664–666 (1979)

    PubMed  Google Scholar 

  • Folkman J, Moscona A (1978) Role of cell shape in growth control Nature 273:345–349

    PubMed  Google Scholar 

  • Grunz H (1977) Differentiation of the four animal and the four vegetal blastomeres of the eight-cell-stage ofTriturus alpestris. Wilhelm Roux's Archives 181:267–277

    Google Scholar 

  • Hara K (1977) The cleavage pattern of the axolotl egg studied by cinematography and cell counting. Wilhelm Roux's Archives 181:73–87

    Google Scholar 

  • Hoperskaya DA (1975) The development of animals homozygous for a mutation causing periodic albinism (ap) inXenopus laevis. J Embryol Exp Morphol 34:253–264

    PubMed  Google Scholar 

  • Johnson KE (1969) Altered contact behaviour of presumptive mesodermal cells from hybrid amphibian embryos arrested at gastrulation. J Exp Zool 170:325–332

    PubMed  Google Scholar 

  • Johnson KE (1970) The role of change in cell contact behaviour in amphibian gastrulation. J Exp Zool 175:391–428

    PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde/glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A-138A

    Google Scholar 

  • Kirschner MW, Hara K (1980) A new method for local vital staining of amphibian embryos using ficoll and “crystals” of Nile Red. Mikroskopie 35:12–15

    Google Scholar 

  • Kurais AR, Stanisstreet M (1980) Scanning electron microscopy of cells from hydroxyurea-arrested blastulae ofXenopus laevis. Experientia 36:454–456

    PubMed  Google Scholar 

  • Landesman R, Gross PR (1968) Patterns of macromolecular synthesis during development ofXenopus laevis 1. Incorporation of radioactive precursors into dissociated embryonic cells. Dev Biol 18:571–589

    PubMed  Google Scholar 

  • Maxwell MH (1970) Two rapid and simple methods used for the removal of resins from 1 μ thick epoxy sections. J Microsc 112:253–255

    Google Scholar 

  • Namenworth P, Moen TL (1973) Regional localisation of soluble proteins in fertilized, uncleaved frog eggs. J Cell Biol 67:302a

    Google Scholar 

  • Nieuwkoop PD (1973) The “organisation centre” of the amphibian embryo: its origin, spatial organisation, and morphogenetic action. Adv Morphog 10:1–39

    PubMed  Google Scholar 

  • Nieuwkoop PD, Faber J (1956) Normal Table ofXenopus laevis Daud. North Holland Publishing Co. Ltd., Amsterdam

    Google Scholar 

  • Palecek J, Ubbels GA, Rzehak K (1978) Changes of the external and internal pigment pattern upon fertilization in the egg ofXenopus laevis. J Embryol Exp Morphol 45:203–214

    PubMed  Google Scholar 

  • Pasteels JJ (1938) Recherches sur les facteurs initiaux de la morphogenèse chez les Amphibiens Anoures. I. Résultat de l'expériences de Schultze et leur interpretation. Arch Biol 49:629–667

    Google Scholar 

  • Pasteels JJ (1964) The morphogenetic role of the cortex of the amphibian egg. Adv Morphog 3:363–388

    Google Scholar 

  • Penners A, Schleip W (1928a) Die Entwicklung der Schultze'schen Doppelbildungen aus dem Ei vonRana fusca. Teil, I–IV. Z wiss Zool 130:305–454

    Google Scholar 

  • Penners A, Schleip W, (1928b) Die Entwicklung der Schultz'schen Doppelbildungen aus dem Ei vonRana fusca. Teil V and VI. Z Wiss Zool 131:1–156

    Google Scholar 

  • Reempts J Van, Borgers M (1975) A Simple polychrome stain for conventionally fixed epon-embedded tissues. Stain Technol 50:19–23

    PubMed  Google Scholar 

  • Schultze O (1894) Die künstliche Erzeugung von Doppelbildungen bei Froschlarven mit Hilfe abnormer Gravitationswirkung. Wilhelm Roux's Archives 1:269

    Google Scholar 

  • Stanisstreet M, Smith JL (1978) Scanning electron microscopy of cells isolated from amphibian early embryos. J Embryol Exp Morphol 48:215–223

    PubMed  Google Scholar 

  • Stearns RN, Kostellow AB (1958) Enzyme, induction in dissociated embryonic cells. In: McElroy WD, Glass B (eds) The chemical basis of development. John Hopkins Press, Baltimore, pp 448–457

    Google Scholar 

  • Steinberg M (1957) Carnegie Inst Washington Yearb 56:347 (report by JD Ebert)

    Google Scholar 

  • Ubbels GA (1977) Symmetrization of the fertilized egg ofXenopus laevis (Studied by cytological, cytochemical and ultrastructural methods). Mem Soc Zool France 41: Symp L Gallien, 103–116

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanisstreet, M., Jumah, H. & Kurais, A.R. Properties of cells from inverted embryos ofXenopus laevis investigated by scanning electron microscopy. Wilhelm Roux' Archiv 189, 181–186 (1980). https://doi.org/10.1007/BF00868676

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00868676

Key words

Navigation