Skip to main content
Log in

Inverse perspective mapping simplifies optical flow computation and obstacle detection

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We present a scheme for obstacle detection from optical flow which is based on strategies of biological information processing. Optical flow is established by a local “voting” (non-maximum suppression) over the outputs of correlation-type motion detectors similar to those found in the fly visual system. The computational theory of obstacle detection is discussed in terms of space-variances of the motion field. An efficient mechanism for the detection of disturbances in the expected motion field is based on “inverse perspective mapping”, i.e., a coordinate transform or retinotopic mapping applied to the image. It turns out that besides obstacle detection, inverse perspective mapping has additional advantages for regularizing optical flow algorithms. Psychophysical evidence for body-scaled obstacle detection and related neurophysiological results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow HB, Levick RW (1965) The mechanism of directional selectivity in the rabbit's retina. J Physiol (London) 173:477–504

    Google Scholar 

  • Bohrer S, Bülthoff HH, Mallot HA (1990) Motion detection by correlation and voting. In: Eckmiller R, Hartmann G, Hauske G (eds) Parallel processing in neural systems and computers, North-Holland, Amsterdam New York, pp 471–474

    Google Scholar 

  • Bülthoff HH, Little JJ, Poggio T (1989) A parallel algorithm for real-time computation of optical flow. Nature 337:549

    Google Scholar 

  • Coxeter HSM (1987) Projective geometry, 2nd edn. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    Google Scholar 

  • Epstein LI (1984) An attempt to explain the differences between the upper and lower halves of the striate cortical map in the cat's field of view. Biol Cybern 49:175–177

    Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Reihenfolgen-Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch (B) 11:513–524

    Google Scholar 

  • Hildreth EC (1984) Computations underlying the measurement of visual motion. Artif Intell 23:309–354

    Google Scholar 

  • Horn BKP, Schunk BG (1981) Determining optical flow. Artif Intell 17:185–203

    Google Scholar 

  • Horn BKP, Weldon Jr EL (1988) Direct methods for recovering motion. Int J Comput Vision 2:51–76

    Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In: Crescitelli F (eds) The visual system of vertebrates. Handbook of Sensory Physiology, VIII/5. Springer, Berlin Heidelberg New York, pp 613–756

    Google Scholar 

  • Johnston A (1989) The geometry of the topographic map. Vision Res 29:1493–1500

    Google Scholar 

  • Little JJ, Verri A (1989) Analysis of differential and matching methods for optical flow. In: Proc. Workshop on Visual Motion. IEEE

  • Little JJ, Bülthoff HH, Poggio T (1988) Parallel optical flow using local voting. In 2. Int Conf Computer Vision (ICCV). IEEE

  • Longuet-Higgins HC, Prazdny K (1980) The interpretation of a moving retinal image. Proc R Soc London B 208:385–397

    Google Scholar 

  • Mallot HA, von Seelen W (1989) Why cortices? Neural networks for visual information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor integration: amphibians, comparisons, models, and robots. Plenum Press, New York pp 357–382

    Google Scholar 

  • Mallot HA, Schulze E, Storjohann K (1989) Neural network strategies for robot navigation. In: Dreyfus G, Personnaz L (eds) Neural networks from models to applications. I.D.S.E.T. Paris, pp 560–569

    Google Scholar 

  • Mallot HA, von Seelen W, Giannakopoulos F (1990) Neural mapping and space-variant image processing. Neural Networks 3:245–263

    Google Scholar 

  • Scott GL (1988) Local and global interpretation of moving images. Pitman, London

    Google Scholar 

  • Seelen W von, Storjohann K, Schulze E, Mallot HA (1988) Verfahren zum Segmentieren dreidimensionaler Szenen. European Patent Application No. 88115757. 2, 1988

  • Verri A, Poggio T (1989) Motion field and optical flow: qualitative properties. IEEE Trans Pattern Anal Machine Intell 11:490–498

    Google Scholar 

  • Warren WH Jr, Whang S (1987) Visual guidance of walking through apertures: body-scaled information for affordances. J Exp Psychol Human Percept Perf 13:371–383

    Google Scholar 

  • Waxman AM, Wohn K (1988) Image flow theory: a framework for 3D inference from time-varying imagery. In: Brown C (eds) Advances in computer vision, vol 1. Erlbaum, Hillsdale, NJ pp 165–224

    Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1989) Spatial vision in a flat world: optical and neural adaptation in arthropods. In Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallot, H.A., Bülthoff, H.H., Little, J.J. et al. Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biol. Cybern. 64, 177–185 (1991). https://doi.org/10.1007/BF00201978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201978

Keywords

Navigation