Skip to main content
Log in

Transition theories of elastic-plastic deformation of metallic polycrystals

  • Review Article
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

A general approach to the problem of determination of elastoplastic behavior of metallic polycrystals at finite deformation is presented. The relation between moving dislocation density and global slip rate for grains is developed. Transition to grain response is obtained by introducing the hardening matrix. Field equations for heterogeneous elastoplastic metals are transformed into an integral equation, using Green functions technique. This allows to find the spin of the lattice related to texture formation.

Scale transition is achieved by a self-consistent approximation of the integral equation. New results concerning BCC metals (sheet steel) are presented. They apply to tensile test, Lankford coefficient, initial and subsequent yield surfaces, and evolution of the internal state of the polycrystal: second-order residual stress, stored energy and texture evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dafalias, Y. F.: The plastic spin concept and a simple illustration of its role in finite plastic transformations. Mech. Materials 3 (1984) 223–235

    Google Scholar 

  2. Diepolder, W.;Mannl, V.;Lippmann, H.: The Cosserat continuum, a model for grain rotations in metals. Int. J. Plasticity 7 (1991) 313–328

    Google Scholar 

  3. Franciosi, P.;Berveiller, M.;Zaoui, A.: Latent hardening in cooper and aluminium single crystals. Acta Metallurgica 28 (1980) 273–283

    Google Scholar 

  4. Franciosi, P.: Etude théoriques et expérimentale du comportement élastoplastique des monocristaux metalliques se déformant par glissement: modélisation pour un chargement complexe quasi statique. Thesis, Université Paris XIII, Villetaneuse, 1984

    Google Scholar 

  5. Mandel, J.: Plasticité classique et viscoplasticité. CISM lecture Notes Vienna: Springer 1971

    Google Scholar 

  6. Hill, R.;Rice, J. R.: Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids 20 (1972) 401–413

    Google Scholar 

  7. Asaro, R. J.: Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23 (1983) 1–115

    Google Scholar 

  8. Nemat-Nasser, S.: On finite plastic flow of crystalline solids and geomaterials. Trans. ASME/J. Appl. Mech. 50 (1983) 1114–1125

    Google Scholar 

  9. Hill, R.: On constitutive macrovariables for heterogeneous solids at finite strain. Proc. R. Soc. London, A 326 (1972) 131–141

    Google Scholar 

  10. Hill, R.: The essential structure of constitutive laws for metals composites and polycrystals. J. Mech. Phys. Sol. 15 (1967) 79–95

    Google Scholar 

  11. Lipinski, P.;Berveiller, M.: Elastoplasticity of micro-inhomogeneous metals at large strais. Int. J. Plasticity 5 (1989) 149–172

    Google Scholar 

  12. Lipinski, P.: Modélisation du comportement des métaux en transformations élastoplastiques finies à partir des méthodes de transition d'échelles. Habilitation, University of Metz, 1993

  13. Dederichs, P. H.;Zeller, R.: Variational treatment of the elastic constants of disordered materials. Z. Phys. 259 (1973) 103–116

    Google Scholar 

  14. Iwakuma, T.;Nemat-Nasser, S.: Finite elastic-plastic deformation of polycrystalline metals and composites. Proc. R. Soc. London. A 394 (1984) 87–119

    Google Scholar 

  15. Hill, R.: A self consistent mechanics of composites materials. J. Mech. Phys. Solids 13, (1965) 213–221

    Google Scholar 

  16. De Witt, R.: Theory of disclinations: Continuous and discrete disclinations in anisotropic elasticity. J. Res. NBS 77A (1973) 49–100

    Google Scholar 

  17. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigen-spannungen. Arch. Ration. Mech. Anal. 4 (1960) 273–334

    Google Scholar 

  18. Mura, T.: Micromechanics of defects in solids. Dordrecht: Nijhoff 1987

    Google Scholar 

  19. Kröner, E.: Kontinuums theorie der Versetzungen und Eigenspannungen. Berlin: Springer 1958

    Google Scholar 

  20. Hutchinson, J. W.: Elastic plastic behavior of polycrystalline metals and composites.. Proc. Roy. Soc. London, A 319 (1970) 247–272

    Google Scholar 

  21. Berveiller, M.; Zaoui, A.: Some applications of the self-consistent scheme in the field of plasticity and texture of metallic polycrystals in large deformations of solids. Elsevier Applied Science (1986) 223–242

  22. Taylor, G. I.: Plastic strain in metals. J. Inst. Metals 62 (1938) 307–324

    Google Scholar 

  23. Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13 (1965) 89–101

    Google Scholar 

  24. Berveiller, M.;Zaoui, A.: Méthodes self consistantes en mécanique des solides hétérogènes. In: Huet, C.; Zaoui, A. (eds.) Comportement rhéologiques et structure des matériaux, pp. 175–200, Paris: ENPC Press 1981

    Google Scholar 

  25. Lin, T. H.: Analysis of elastic and plastic strains of a FCC crystal. J. Mech. Phys. Solids. 5 (1957) 143–149

    Google Scholar 

  26. Kröner, E.: Zur plastischen Verformung des Vielkristalls. Acta Metallurgica 9 (1961) 155–161

    Google Scholar 

  27. Maugin, G. A.: The thermomechanics of plasticity and fracture. Cambridge: Cambridge University Press 1992

    Google Scholar 

  28. Hill, R.: The mathematical theory of plasticity. Oxford: Clarendon Press 1960

    Google Scholar 

  29. Lemaitre, J.;Chaboche, J. L.: Mechanics of solid materials. Cambridge: University Press 1990

    Google Scholar 

  30. Lippmann, H.: Mechanik des plastischen Fließens, Berlin: Springer 1981

    Google Scholar 

  31. Mughrabi, H.: Dislocation clustering and long range internal stresses in monotonically and cyclically deformed metal crystals. Rev. Phys. Appl. 23 (1988) 367–382

    Google Scholar 

  32. Orowan, E.: A type of plastic deformation new in metals. Nature 149 (1942) 643–644

    Google Scholar 

  33. Hansen, N.;Jensen, D. J.: Microscopic and crystallographic aspects of flow stress anisotropy. In: Bochler, J. P., Khan, A. S. (eds.) Anisotropy and localisation, of plastic deformation 368–376 Proc. Plasticity 91. Grenoble: Elsevier 1991

    Google Scholar 

  34. Berveiller, M.;Muller, D.;Kratochvil, J.: Non-local versus local elastoplastic behavior of heterogeneous materials. Int. J. Plasticity 9 (1993) 633–652

    Google Scholar 

  35. Peach, M. O.;Koehler, J. S.: The forces exerted on dislocations and the yields, produced by them. Phys. Rev. 80 (1950) 436–439

    Google Scholar 

  36. Schmid, E.;Boas, W.: Kristallplastizität. Berlin: Springer 1935

    Google Scholar 

  37. Lipinski, P.;Krier, J.;Berveiller, M. Elstoplasticité des matériaux en grandes déformations: comportement global et évolution de la structure interne. Rev. Phys. Appl. 25 (1990) 361–388

    Google Scholar 

  38. Kröner, E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls Z. Phys. 151 (1958) 504–518

    Google Scholar 

  39. Willis, J. R.: A polarization approach of the scattering of elastic waves — I. Scattering by a single inclusion. J. Mech. Phys. Solids 28 (1980) 287–305

    Google Scholar 

  40. Kröner, E.: Elastic Moduli of perfectly disordered maretials. J. Mech. Phys. Sol. 15 (1967) 319–329

    Google Scholar 

  41. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London, A 241 (1957) 376–396

    Google Scholar 

  42. Reubrez, E.: Optimal crystallographic texture determination for metal forming processes using a self-consistent model. 13th RISO International Symposium on Material Science, pp. 403–408, 1992

  43. Franciosi, P.: On flow and work hardening expression correlations in metallic single crystal plasticity. Rev. Phys. Appl. 23 (1988) 383–394

    Google Scholar 

  44. Boehler, J. P. On a rational formulation of isotropic and anisotropic hardening. In: Sawczuk, A. (ed.) Plasticity today, pp. 483–503, New York: Pergamon Press 1985

    Google Scholar 

  45. Chrysochoos, A.: Bilan energetique en élastoplasticité grandes déformations. J. Mec. Théo. Appl. 4 (1985) 589–614

    Google Scholar 

  46. Bever, M. D.;Holt, D. L.;Titchener, A. L.: The stored energy of cold work. Prog. Mat. Sci. 17 (1967) 1191

    Google Scholar 

  47. Williams, R. O.: Determination of the stored energy of deformation of metals and alloys In: Hermann, H. (ed.) Experimental Methods and Materials Research, pp. 251–278 New York: Wiley 1967

    Google Scholar 

  48. Baczmanski, A.: Examination of rotation rate field and internal stresses in plastically deformed polycrystalline materials. Thesis, Tech. Univ. Cracow 1992

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipinski, P., Berveiller, M., Reubrez, E. et al. Transition theories of elastic-plastic deformation of metallic polycrystals. Arch. Appl. Mech. 65, 291–311 (1995). https://doi.org/10.1007/BF00789222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00789222

Key words

Navigation