Skip to main content
Log in

Analysis of the behavior of a bubble in a viscous incompressible liquid by finite element method

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

The finite element method is used for the analysis of the behavior of a nonspherical bubble in a viscous incompressible liquid under axial conditions. The finite element approximations of the Navier Stokes equations are formulated by taking velocity and pressure as unknown variables. The flow field is discretized by triangular elements, and the bubble surface is represented by isoparametric elements with curved sides. This numerical technique is applied to the simulation of an initially spherical vapor bubble collapsing near a plane solid wall. It is made clear that a jet formed on the bubble is decelerated by the effect of liquid viscosity.

Übersicht

Mit dem Verfahren der Finiten Elemente wird das Verhalten einer nichtkugelförmigen Blase in einer zähen inkompressiblen Flüssigkeit bei rotationssymmetrischen Bedingungen untersucht. Die Navier-Stokesschen Gleichungen werden mit der Methode der Finiten Elemente näherungsweise gelöst. Das Strömungsfeld um die Blase wird in kleine dreieckige Elemente zerlegt, wobei die Oberfläche der Blase durch isoparametrische Elemente mit gekrümmten Seiten ersetzt wird. Die numerischen Rechnungen werden für den Zusammenbruch einer Blase, die anfangs kugelförmig war, in der Nähe einer ebenen festen Wand durchgeführt. Das Ergebnis zeigt, daß sich die Geschwindigkeit des in der Blase entstehenden Flüssigkeitsstrahls wegen des Einflusses der Zähigkeit vermindert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin, T. B.; Ellis, A. T.: The Collapse of Cavitation Bubbles and the Pressure Thereby Produced Against Solid Boundaries. Phil. Trans. Roy. Soc. London. Ser. A. 260 (1966) pp. 221–240

    Google Scholar 

  2. Hammitt, F. G.; Kling, C. L.; Mitchell, T. M.; Timm, E. E.: Asymmetric Cavitation Bubble Collapse Near Solid Objects. The University of Michigan. Report No. UMICH 03371-6-1, 1970

  3. Timm, E. E.; Hammitt, F. G.: Bubble Collapse Adjacent to a Rigid Wall, a Flexible Wall, and a Second Bubble. ASME Cavitation Forum (1971) PP. 18–20

  4. Popoviciu, M.: A Photographic Study of Spherical Bubbles Dynamics. Proc. of Fourth Conference on Fluid Machinery (1972) pp. 1031–1044

  5. Smith, R. H.; Mesler, R. B.: A Photographic Study of the Effect of an Air Bubble on the Ground and Collapse of a Vapor Bubble Near a Surface. Trans. ASME, Ser. D, J. Basic Engng. 94 (1972) pp. 933–942

    Google Scholar 

  6. Lord, Rayleigh: On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity. Phil. Mag. 34 (1917) pp. 94–98

    Google Scholar 

  7. Rattray, M.: Perturbation Effects in Cavitation Bubble Dynamics. California Institute of Technology, Ph. D. thesis, 1951.

  8. Shima, A.: The Behavior of a Spherical Bubble in the Vicinity of a Solid Wall. Trans. ASME Ser. D, J. Basic Engng. 90 (1968) pp. 75–89

    Google Scholar 

  9. Plesset, M. S.; Chapman, R. B.: Collapse of an Initially Spherical Vapor Cavity in the Neighbourhood of a Solid Boundary. J. Fluid Mech. 47 (1971) pp. 283–290

    Google Scholar 

  10. Mitchell, T. M.; Hammitt, F. G.: Asymmetric Cavitation Bubble Collapse. Trans. ASME Ser. I, J. Fluids Engng. 95 (1973) PP. 29–37

    Google Scholar 

  11. Dé Vries, G.; Norrie, D. H.: The Application of the Finite Element Technique to Potential Flow Problems. Trans. ASME Ser. E, J. Appl. Mech. 38 (1971) pp. 798–802

    Google Scholar 

  12. Tong Pin: The Finite Element Method for Fluid Flow. Proc. Japan-U.S. Seminar Matrix Method. Struct. Anal. Design, Tokyo (1971) PP. 787–808

  13. Argyris, J. H.; Mareczek, G.: Potential Flow Analysis by Finite Elements. Ing.-Arch. 42 (1972) pp. 1–25

    Google Scholar 

  14. Atkinson, B.; Brocklebank, M. P.; Card, C. C. H.; Smith, J. M.: Low Reynolds Number Developing Flows. AIChE J. 15 (1969) PP. 548–553

    Google Scholar 

  15. Bratanow, T.; Ecer, A.; Kobiske, M.: Finite-Element Analysis of Unsteady Incompressible Flow Around an Oscillating Obstacle of Arbitrary Shape. AIAA J. 11 (1973) PP. 1471–1477

    Google Scholar 

  16. Oden, J. T.; Wellford, L. C.Jr.: Analysis of Flow of Viscous Fluid by the Finite-Element Method. AIAA J. 10 (1972) pp. 1590–1599

    Google Scholar 

  17. Taylor, C.; Hood, P.: A Numerical Solution of the Navier-Stokes Equations Using the Finite Element Technique. Computers & Fluids. 1 (1973) pp. 73–100

    Google Scholar 

  18. Baker, A. J.: Finite Elements Solution Algorithm for Viscous Incompressible Fluid Dynamics. Int. J. Num. Methods Engng. 6 (1973) pp. 89–101

    Google Scholar 

  19. Finlayson, B. A.; Scriven, L. E.: The Method of Weighted Residuals and its Relation to Certain Variational Principles for the Analysis of Transport Processes. Chem. Engng. Sci. 20 (1965) pp. 395–404

    Google Scholar 

  20. Finlayson, B. A.; Scriven, L. E.: On the Search for Variational Principles. Int. J. Heat Mass Transfer 10 (1967) pp. 799–821

    Google Scholar 

  21. Zenkiewicz, O. C.; Cheung, Y. K.: The Finite Element Method in Structural and Continuum Mechanics. London 1967

  22. Oden, J. T.; Oliveira, E. R. A.: Lectures on Finite Elements Methods in Continuum Mechanics. Univ. of Alabama Press, 1973

  23. Norrie, D. H.; dé Vries, G.: The Finite Element Method. New York and London 1973

  24. Ergatoudis, I.; Irons, B. M.; Zienkiewicz, O. C.: Curved Isoparametric, „Quadrilateral” Elements for Finite Element Analysis. Int. J. Solids Structures 4 (1968) pp. 31–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, K., Shima, A. Analysis of the behavior of a bubble in a viscous incompressible liquid by finite element method. Ing. arch 46, 21–34 (1977). https://doi.org/10.1007/BF00534957

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00534957

Keywords

Navigation