Skip to main content
Log in

Zinc accumulation in the telencephalon of lizards

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

The zinc concentration in the brains of two species of lizard was determined by atomic-absorption spectrophotometry. The zinc concentration was found to be highest in the telencephalon of Lacerta galloti (21.1 μg/g fresh weight) and Podarcis hispanica (16.77±0.8 μg/g) while the mesencephalon and brain stem exhibited lower zinc concentrations, i.e., 7.0 μg/g in Lacerta galloti and 6.08±0.4 μg/g in Podarcis hispanica. This high telencephalic concentration of zinc is paralleled by intense and well-defined Timm reactivity used for demonstrating the presence of zinc-containing boutons at the light-microscope level. Volumetricdensitometric studies of these Timm-reactive zones were performed using serial transverse sections of the same lizard brains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assaf SI, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Google Scholar 

  • Crawford IL (1983) Zinc and the Hippocampus. In: Dreosti IE, Smith RM (eds) Neurobiology of the trace elements. Humana Press, Clifton, pp 163–211

    Google Scholar 

  • Danscher G (1984a) Do the Timm sulphide silver method and the selenium method demonstrate zinc in the brain? In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Part A: Physyochemistry, anatomy and techniques. Alan R Liss, New York, pp 273–287

    Google Scholar 

  • Danscher G (1984b) Dynamic changes in the stainability of rat hippocampal mossy fiber boutons after local injection of sodium sulphide, sodium selenite, and sodium diethyldithiocarbamate. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Part B: Deficiency, toxicity and pathology. Alan R Liss, New York, pp 177–191

    Google Scholar 

  • Danscher G, Haug FMS (1971) Depletion of metal in the rat hippocampal mossy fibre system by intravital chelation with dithizone. Histochemie 28:211–219

    Google Scholar 

  • Danscher G, Haug FMS, Fredens K (1972) Effect of diethyldithiocarbamate (DEDTC) on dulphide silver stained boutons. Exp Brain Res 16:521–532

    Google Scholar 

  • Danscher G, Hall E, Fredens K, Fjerdingstad E, Fjerdingstad EJ (1975) Heavy metals in the amigdala of the rat: zinc, lead and copper. Brain Res 94:167–172

    Google Scholar 

  • Danscher G, Howell G, Perez-Clausell J, Hertel N (1985) The dithizone, Timm's sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. Histochemistry 83:419–422

    Google Scholar 

  • Fleischhauer K, Horstmann E (1957) Intravitaler Dithizonfarburg homologer Felder der Ammonsformation von Sauger. Z Zellforsch 46:598–609

    Google Scholar 

  • Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB (1983) Cytoarchitectonic distribution of zinc in the hippocampus of man and the rat. Brain Res 273:335–339

    Google Scholar 

  • Haug FMS (1967) Electron microscopical localization of the zinc in hippocampal mossy fiber synapses by a modified sulfide silver procedure. Histochemie 8:355–368

    Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation induced uptake and release of zinc in hippocampal slices. Nature 308:736–738

    Google Scholar 

  • Hu KH, Friede RL (1968) Topographic determination of zinc in human brain by atomic absorption spectrophotometry. J Neurochem 15:677–685

    Google Scholar 

  • Ibata Y, Otsuka N (1969) Electron microscopic demonstration of zinc in the hippocampal formation using Timm's sulfide-silver technique. J Histochem Cytochem 17:171–175

    Google Scholar 

  • Kalinowski M, Wolf G, Markefski M (1983) Concentration and subcellular localization of zinc in the hippocampal formation, cerebellum, and whole brain during the postnatal development of the rat. Acta Histochem 73:33–40

    Google Scholar 

  • Kemp K, Danscher G (1979) Multi-element analysis of the rat hippocampus by proton induced x-ray emission spectroscopy (phosphorus, sulphur, chlorine, potassium, calcium, iron, zinc, copper, lead, bromine and rubidium). Histochemistry 59:167–176

    Google Scholar 

  • Ketelslegers JM (1969) Localisation histochimique du zinc dans le telencephale du lezard Lacerta muralis. Cellule 58:69–75

    Google Scholar 

  • Kozma M, Ferke A, Kasa P (1978) Ultrastructural identification of neural elements containing trace metals. Acta Histochem 62:142–154

    Google Scholar 

  • Kozma M, Ferke A (1979) Trace element localization and changes in zinc and copper concentrations during postnatal development of the rat CNS. Acta Histochem 65:219–227

    Google Scholar 

  • Lopez-Garcia C, Molowny A, Perez-Clausell J (1983a) Volumetric and densitometric study in the cerebral cortex and septum of a lizard (Lacerta galloti) using the Timm method. Neurosci Lett 40:13–18

    Google Scholar 

  • Lopez-Garcia C, Soriano E, Molowny A, Garcia-Verdugo JM, Berbel P, Regidor J (1983b) The Timm positive system of axonic terminals of the cerebral cortex of Lacerta. In: Grisolia S, Guerri C, Samson F, Norton S, Reinoso-Suarez F (eds) Ramon y Cajal's contribution to the neurosciences. Elsevier, Amsterdam, pp 137–148

    Google Scholar 

  • Lopez-Garcia C, Molowny A, Perez-Clausell J, Martinez-Guijarro FJ (1984) A sulphide-osmium procedure for detection of metalcontaining synaptic boutons in the lizard cerebral cortex. J Neurosci Methods 11:211–220

    Google Scholar 

  • Martinez Guijarro FJ, Berbel P, Molowny A, Lopez-Garcia C (1984) Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta). Anat Embryol 170:321–326

    Google Scholar 

  • Maske H (1955) Über den topochemischen Nachweis von Zink im Ammonshorn verschiedener Säugetiere. Naturwissenschaften 42:424–425

    Google Scholar 

  • McLardy T (1960) Neurosyncytial aspects of the hippocampal mossy fiber system. Confin Neurol 20:1–17

    Google Scholar 

  • Molowny A, Lopez-Garcia C (1978) Estudio citoarquitectonico de la corteza cerebral de reptiles. III: Localization histoquimica de metales pesados y definicion de subregiones Timm positivas en la corteza de Lacerta, Chalcides, Tarentola y. Malpolon. Trab Inst Cajal Invest Biol 70:55–74

    Google Scholar 

  • Molowny A (1980) Estudio de la corteza cerebral de Locerta y otros reptiles con la tecnica de Timm. Doctoral Thesis, Universidad de La Laguna (Tenerife), Spain

    Google Scholar 

  • Perez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 336:91–99

    Google Scholar 

  • Szerdahelyi P, Kasa P (1985) Demonstration of reduced levels of zinc in rat brain after treatment with d-amphetamine, but not after treatment with reserpine. Histochemistry 83:181–187

    Google Scholar 

  • Timm F (1958) Zur Histochemie des Ammonshorngebietes. Z Zellforsch 48:548–555

    Google Scholar 

  • Von Euler C (1961) On the significance of the high zinc content in the hippocampal formation. In: Physiologie de l'hippocampe. CNRS, Paris, 107:135–145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molowny, A., Martinez-Calatayud, J., Juan, M.J. et al. Zinc accumulation in the telencephalon of lizards. Histochemistry 86, 311–314 (1987). https://doi.org/10.1007/BF00490264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00490264

Keywords

Navigation