Skip to main content
Log in

New methods for the demonstration of lysosomal hydrolases by the formation of osmium blacks

  • Published:
Histochemie Aims and scope Submit manuscript

Summary

Methods are described for the direct cytochemical demonstration of the enzymes nonspecific esterase and acid phosphatase based on synthetic substrates which initially deposit Hatchett's brown (cupric ferrocyanide, Cu2Fe(CN)6·7 H2O) at their subcellular sites. The small amounts of Hatchett's brown deposited as a result of the enzyme's activity may be intensified by bridging to osmium through thiocarbohydrazide. Alternatively, even greater amplification of the sites of activity may be attained by utilizing the Hatchett's brown as a catalyst to effect the oxidative coupling of 3,3′-diaminobenzidine resulting in the formation of an osmiophilic indamine-type polymer.

One of the major advantages of this new approach is that it permits the study of acid hydrolase localization without lead in the incubation medium. Studies were performed with these methods having identical incubation media except for synthetic substrate in many different cell types and tissues. They verify a frequent nonlysosomal localization for acid phosphatase and the heterogeneity of lysosomes and lysosomal populations with respect to hydrolase content.

These methods give information obtained by direct cytochemical observation an advantage not previously held, in comparison with information from cell-fractionation cytochemical or biochemical studies. Initial studies with these methods on many tissues reinforce previous suggestions of the involvement of acid hydrolases in extralysosomal sites in subcellulur anabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, N. N., Duve, C. de: Digestive activity of lysosomes. II. The digestion of macromolecular carbohydrates by extracts of rat liver lysosomes. J. biol. Chem. 243, 4564–4573 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Bergman, R. A., Veno, H., Morizono, Y., Hanker, J. S., Seligman, A. M.: Ultrastructural demonstration of acetylcholinesterase activity of motor endplates via osmiophilic diazothioethers. Histochemie 11, 1–12 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Deuchar, E. M.: Regional differences in catheptic activity in Xenopus laevis embryos. J. Embryol. exp. Morph. 6, 223–237 (1958).

    CAS  PubMed  Google Scholar 

  • Duve, C. de, Pressman, B. C., Gianetto, R., Wattiaux, R., Appelmans, F.: Tissue fractionation studies. VI. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J. 60, 604–617 (1955).

    Article  PubMed Central  Google Scholar 

  • El-Aaser, A. A., Reid, E.: Phosphatase activities in rat liver before and after birth. Histochem. J. 1, 439–458 (1969).

    Article  CAS  PubMed  Google Scholar 

  • El-Badawi, A., Schenk, E. A.: Histochemical methods for separate, consecutive and simultaneous demonstration of acetylcholinesterase and norepinephrine in cryostat sections. J. Histochem. Cytochem. 16, 580–588 (1967).

    Article  Google Scholar 

  • Etherton, J. E., Botham, C. M.: Factors affecting lead capture methods for the fine localization of rat lung acid phosphatase. Histochem. J. 2, 507–519 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Fishman, W. H., Goldman, S. S., DeLellis, R.: Dual localization of β-glucuronidase in endoplasmic reticulum and in lysosomes. Nature (Lond.) 213, 457–460 (1967).

    Article  CAS  Google Scholar 

  • Fishman, W. H., Ide, H., Rufo, R.: Dual localization of acid hydrolases in endoplasmic reticulum and in lysosomes. Histochemie 20, 287–299 (1969).

    Article  CAS  PubMed  Google Scholar 

  • Gabel, N. W., Thomas, V.: Evidence for the occurrence and distribution of inorganic polyphosphates in vertebrate tissues. J. Neurochem. 18, 1229–1242 (1971).

    Article  CAS  PubMed  Google Scholar 

  • Gomori, G.: Distribution of acid phosphatase in the tissues under normal and pathologic conditions. Arch. Path. 32, 189–199 (1941).

    CAS  Google Scholar 

  • Gomori, G.: An improved histochemical technic for acid phosphatase. Stain Technol. 25, 81–85 (1950).

    Article  CAS  Google Scholar 

  • Graham, R. C., Jr., Karnovsky, M. J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–301 (1966).

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. B., Davidson, N. M., Penniall, R.: Studies of phosphorus metabolism by isolated nuclei. VII. Identification of polyphosphate as a product. J. biol. Chem. 240, 4427–4434 (1965).

    Article  CAS  PubMed  Google Scholar 

  • Hahn, H. P. von, Herrmann, H.: Effects of amino acid analogs on growth and catheptic activity of chick embryo expliants. Develop. Biol. 5, 309–327 (1962).

    Article  Google Scholar 

  • Hanker, J. S., Anderson, W. A., Bloom, F. E.: Osmiophilic polymer generation: catalysis by transition metal compounds in ultrastructural cytochemistry. Science 175, 991–993 (1972a).

    Article  CAS  PubMed  Google Scholar 

  • Hanker, J. S., Deb, C., Seligman, A. M.: Staining tissue for light and electron microscopy by bridging metals with multidentate ligands. Science 152, 1631–1634 (1966a).

    Article  CAS  PubMed  Google Scholar 

  • Hanker, J. S., Hammarström, L. E., Toverud, S. U., Yates, P. E.: The formaldehyde-sensitivity of acid phosphatases involved in osteogenesis and odontogenesis. Arch. oral Biol. 17, 503–511 (1972b).

    Article  CAS  PubMed  Google Scholar 

  • Hanker, J. S., Kasler, F., Bloom, M. G., Copeland, J. S., Seligman, A. M.: Coordination polymers of osmium; the nature of osmium black. Science 156, 1737–1738 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Hanker, J. S., Katzoff, L., Rosen, H. R., Seligman, M. L., Ueno, H., Seligman, A. M.: Design and synthesis of thiolesters for the histochemical demonstration of esterase and lipase via the formation of osmiophilic diazothioethers. J. Med. Chem. 9, 288–291 (1966b).

    Article  CAS  PubMed  Google Scholar 

  • Hanker, J. S., Seaman, A. R., Weiss, L. P., Ueno, H., Bergman, R. A., Seligman, A. M.: Osmiophilic reagents; new cytochemical principle for light and electron microscopy. Science 146, 1039–1043 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, H.: Comparative histochemical localization of lysosomal enzymes in rat tissues. J. Histochem. Cytochem. 15, 83–92 (1967).

    Article  CAS  PubMed  Google Scholar 

  • Hess, R., Pearse, A. G. E.: The histochemistry of indoxylesterase of rat kidney with special reference to its cathepsin-like activity. Brit. J. exp. Path. 39, 292–299 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holt, S. J., Hicks, R. M.: Studies on formalin fixation for electron microscopy and cytochemical staining purposes. J. biophys. biochem. Cytol. 11, 31–45 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt, S. J., Hicks, R. M.: The importance of osmiophilia in the production of stable azoindoxyl complexes of high contrast for combined enzyme cytochemistry and electron microscopy. J. Cell Biol. 29, 361–366 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnovsky, M. J., Roots, L.: A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Katchburian, E., Holt, S. J.: Role of lysosomea in amelogenesis. Nature (Lond.) 223, 1367–1368 (1969).

    Article  CAS  Google Scholar 

  • Katchburian, E., Katchburian, A. V., Pearse, A. G. E.: Histochemistry of lysosomal enzymes in developing teeth of albino rats. J. Anat. (Lond.) 101, 783–792 (1967).

    CAS  Google Scholar 

  • Lake, B. D.: The histochemistry of phosphatases: The use of lead acetate instead of lead nitrate. J. roy. micr. Soc. 85, 73–75 (1965).

    Article  Google Scholar 

  • Leaback, D. H.: Esterase activities of β-N-acetyl-D-glucosaminidase preparations. Biochim. biophys. Acta (Amst.) 191, 105–109 (1969).

    Article  CAS  Google Scholar 

  • Lojda, Z., Vecerek, B., Pelichova, H.: Some remarks concerning the histochemical detection of acid phosphatase by azo-coupling reactions. Histochemie 3, 428–454 (1964).

    Article  Google Scholar 

  • Novikoff, A. B.: Enzyme localization and ultrastructure of neurons. In: The neuron (H. Hydén, ed.), p. 255–311. Amsterdam: Elesevier Publishing Co. (1967).

    Google Scholar 

  • Novikoff, P. M., Novikoff, A. B., Quintana, N., Hauw, J. J.: Golgi apparatus, gerl and lysosomes of neurons in rat dorsal root ganglia studied by thick section and thin section cytochemistry. J. Cell Biol. 50, 859–886 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palade, G. E.: Intracellular localization of acid phosphatase. A comparative study of biochemical and histochemical methods. J. exp. Med. 94, 535–549 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palkama, A., Rechardt, L.: Light and electron microscopic observations on acid phosphatase activity in the adrenal medulla of the rat and mouse. Ann. Med. exp. Fenn. 48, 77–83 (1970).

    CAS  PubMed  Google Scholar 

  • Pearse, A. G. E.: Histochemistry, theoretical and applied, vol. 1. Boston: Little, Brown and Co. 1968.

    Google Scholar 

  • Penniall, R., Griffin, J. B.: Studies of phosphorus metabolism by isolated nuclei. IV. Formation of polyphosphate. Biochim. biophys. Acta (Amst.) 90, 429–431 (1964).

    Article  CAS  Google Scholar 

  • Plapinger, R. E., Linus, S. L., Kawashima, T., Deb, C., Seligman, A. M.: Preparation and structure-activity relationship of reagents for cytochrome oxidase activity: Potential for light and electron microscopy. Histochemie 14, 1–16 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Reid, E.: Biochemical approaches to cancer. Oxford: Pergamon Press Ltd. 1965.

    Google Scholar 

  • Schultz, R. L., Jacques, P. J.: Characteristics of lysosomes in rat placental cells. Arch. Biochem. 144, 293–303 (1971).

    Article  Google Scholar 

  • Seligman, A. M., Kawashima, T., Ueno, H., Katzoff, L., Hanker, J. S.: Histochemical demonstration of acid and alkaline phosphatase using 2-naphthylthiolphosphate as substrate and osmiophilic derivatives as end products. Acta histochem. cytochem. 3, 29–40 (1970).

    Article  CAS  Google Scholar 

  • Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., Hanker, J. S.: Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seligman, A. M., Ueno, H., Wasserkrug, H. L., Hanker, J. S.: Esterase method for light and electron microscopy via the formation of osmiophilic diazothioethers. Ann. Histochim. 11, 115–129 (1966a).

    CAS  PubMed  Google Scholar 

  • Seligman, A. M., Wasserkrug, H. L., Hanker, J. S.: A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J. Cell Biol. 30, 424–432 (1966b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, R. E., Farquhar, M. G.: Preparation of nonfrozen sections for electron microscope cytochemistry. Scient. Instr. News, R.C.A. 10, 12–17 (1965).

    Google Scholar 

  • Smith, R. E., Farquhar, M. G.: Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J. Cell Biol. 31, 319–347 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel, H. J.: Relationship of three lysosomal enzymes to the Golgi zone and secretory activity in the rat pituitary and thyroid glands. Anat. Rec. 143, 389–393 (1962).

    Article  CAS  PubMed  Google Scholar 

  • Straus, W.: Cytochemical observations on the relationship between lysosomes and phagosomes in kidney and liver by combined staining for acid phosphatase and intravenously injected horseradish peroxidase. J. Cell Biol. 20, 497–507 (1964a).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straus, W.: Occurrence of phagosomes and phago-lysosomes in different segments of the nephron in relation to the reabsorption, transport, digestion, and extrusion of intravenously injected horseradish peroxidase. J. Cell Biol. 21, 295–308 (1964b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylvén, B., Tobias, C. A., Malmgren, H., Ottoson, R., Thorell, B.: Cyclic variations in the peptidase and catheptic activities of yeast cultures synchronized with respect to cell multiplication. Exp. Cell Res. 16, 75–87 (1959).

    Article  PubMed  Google Scholar 

  • Woessner, J. F., Jr.: Acid hydrolases of connective tissue. In: International review of connective tissue research (D. A. Hall, ed.), vol. 3, p. 238. New York: Academic Press, Inc. 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by U.S.P.H.S. Grant DE-02668.

Dr. Anderson's work was performed at the Department of Anatomy of the University of Chicago and was supported by Research Grant No. M 71-077C from the Population Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanker, J.S., Yates, P.E., Clapp, D.H. et al. New methods for the demonstration of lysosomal hydrolases by the formation of osmium blacks. Histochemie 30, 201–214 (1972). https://doi.org/10.1007/BF00277592

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277592

Keywords

Navigation