Skip to main content
Log in

Calcein-AM is a detector of intracellular oxidative activity

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Calcein-acetoxymethylester (calcein-AM) is a non-fluorescent, cell permeant compound, which is converted by intracellular esterases into calcein, an anionic fluorescent form. It is used in microscopy and fluorometry and provides both morphological and functional information of viable cells. In this study we have tested the response of calcein-AM to oxidation. In cell-free fluorometric assays, H2O2 and xanthine–xanthine oxidase induced a dose-dependent emission of the AM form but had no effects on calcein. Fluorometric and confocal microscopy tests on human fibroblasts confirmed that the cell permeant AM form is the actual sensor since its removal from culture medium, and its consequent back-diffusion, made the system insensitive to oxidative stimuli. In time-lapse confocal microscopy, calcein-AM detected changes in the intracellular redox state following direct oxidation (H2O2, xanthine–xanthine oxidase) and phorbol ester treatment. Comparative tests showed that calcein-AM sensitivity to oxidation is about one order of magnitude higher than other fluorescein derivatives. The absence of leakage, due to the presence of the probe in the extracellular compartment, and its low toxicity allow to perform experiments for prolonged times following the response to the same or different stimuli repeatedly applied. We propose calcein-AM as a sensitive tool for intracellular ROS generation in living cells with useful applications for real-time imaging in confocal microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A–F
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    CAS  PubMed  Google Scholar 

  • Bergendi L, Benes L, Durackova Z, Ferencik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65:1865–1874

    Article  CAS  PubMed  Google Scholar 

  • Bussolati O, Belletti S, Uggeri J, Gatti R, Orlandini G, Dall’Asta V, Gazzola GC (1995) Characterization of apoptotic phenomena induced by treatment with l-asparaginase in NIH3T3 cells. Exp Cell Res 220:283–291

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    CAS  PubMed  Google Scholar 

  • Czyz J, Irmer U, Schulz G, Mindermann A, Hulser DF (2000) Gap-junctional coupling measured by flow cytometry. Exp Cell Res 255:40–46

    Article  CAS  PubMed  Google Scholar 

  • Diaz G, Liu S, Isola R, Diana A, Falchi AM (2003) Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes. Histochem Cell Biol 120:319–325

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  CAS  PubMed  Google Scholar 

  • Gabriel C, Camins A, Sureda FX, Aquirre L, Escubedo E, Pallas M, Camarasa J (1997) Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Methods 38:93–98

    Article  CAS  PubMed  Google Scholar 

  • Gatti R, Belletti S, Orlandini G, Bussolati O, Dall’Asta V, Gazzola GC (1998) Comparison of annexin V and calcein-AM as early vital markers of apoptosis in adherent cells by confocal laser microscopy. J Histochem Cytochem 46:895–900

    CAS  PubMed  Google Scholar 

  • Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897

    Google Scholar 

  • Homolya L, Hollo M, Muller M, Mechetner EB, Sarkadi B (1996) A new method for a quantitative assessment of P-glycoprotein-related multidrug resistance in tumour cells. Br J Cancer 73:849–855

    CAS  PubMed  Google Scholar 

  • Jones RA, Smail A, Wilson MR (2002) Detecting mitochondrial permeability transition by confocal imaging of intact cells pinocytically loaded with calcein. Eur J Biochem 269:3990–3997

    Article  CAS  PubMed  Google Scholar 

  • Lemasters JJ, Qian T, Elmore SP, Trost LC, Nishimura Y, Herman B, Bradham CA, Brenner DA, Nieminen AL (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofactors 8:283–285

    CAS  PubMed  Google Scholar 

  • Liegibel UM, Abrahamse SL, Pool-Zobel BL, Rechkemmer G (2000) Application of confocal laser scanning microscopy to detect oxidative stress in human colon cells. Free Radic Res 32:535–547

    CAS  PubMed  Google Scholar 

  • Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  CAS  PubMed  Google Scholar 

  • Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65:1575–1582

    Article  CAS  PubMed  Google Scholar 

  • Orlandini G, Ronda N, Gatti R, Gazzola GC, Borghetti A (1999) Receptor-ligand internalization. Methods Enzymol 307:340–350

    CAS  PubMed  Google Scholar 

  • Parish CR (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77:499–508

    Article  CAS  PubMed  Google Scholar 

  • Plantin-Carrenard E, Braut-Boucher F, Bernard M, Derappe C, Foglietti MJ, Aubery M (2000) Fluorogenic probes applied to the study of induced oxidative stress in the human leukemic HL60 cell line. J Fluorescence 10:167–176

    Article  CAS  Google Scholar 

  • Sambo P, Baroni SS, Luchetti M, Paroncini P, Dusi S, Orlandini G, Gabrielli A (2001) Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 44:2653–2664

    Article  CAS  PubMed  Google Scholar 

  • Sawada GA, Raub TJ, Decker DE, Buxser SE (1996) Analytical and numerical techniques for the evaluation of free radical damage in cultured cells using scanning laser microscopy. Cytometry 25:254–262

    Article  CAS  PubMed  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279: L1005–L1028

    CAS  PubMed  Google Scholar 

  • Ubezio P, Civoli F (1994) Flow cytometric detection of hydrogen peroxide production induced by doxorubicin in cancer cells. Free Radic Biol Med 16:509–516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The confocal microscope is a facility of CIM, Centro Interfacoltà Misure, University of Parma, Italy. This study was supported by a local research grant (FIL, University of Parma, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Uggeri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uggeri, J., Gatti, R., Belletti, S. et al. Calcein-AM is a detector of intracellular oxidative activity. Histochem Cell Biol 122, 499–505 (2000). https://doi.org/10.1007/s00418-004-0712-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0712-y

Keywords

Navigation