Skip to main content
Log in

Kontrolle des crossing over vom temperatur-bedingten Allozykliegrad und vom α-Heterochromatin des X-Chromosoms bei Phryne cincta

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    In populations of the dipteran Phryne cincta (2n = 6+XX♀, XY♂) several X-chromosomes of different structure are present. These are allocyclic in contrast to the (eucyclic) autosomes, as seen in their behaviour in mitosis and meiosis and in their varied appearance in polytene nuclei (comp. Wolf 1950, 1957).

  2. 2.

    The polytene autosomes (2–4 s. Pig. 7) differ from each other in easily recognizable characters and form no chromocenter. The polytene X-chromosome is always relatively much shorter than the autosomes and more or less β-heterochromatic (granular or indistinctly banded) in larvae, raised at room temperature. In larvae raised at low temperature (0–4° C) it passes through a morphogenesis, growing to normal or nearly normal length and assuming the aspect of an euchromatic element (comp. X a in Figs. 3 and 4).

  3. 3.

    Two stocks, characterized by different X-chromosomes, symbolized by X a and X b or a and b respectively, were chosen for the experiments. In mitosis both these X-chromosomes are rod-like, a is as long as autosome 4, b has only half its length (Figs. 1, 2a–d).

  4. 4.

    Just before pupation, in polytene nuclei of larvae raised at low temperature a and b are of almost equal length. They differ from each other in several inversions and in the appearance of two large α-heterochromatic bands in a2 and α3, Fig. 5; “α-quantum-difference”).

  5. 5.

    The α-bands, especially the large block α2, show a considerable intercellular variation in their relative DNA-content (measured as length of the α-element). The mean DNA-content is negatively correlated with the degree of stretching of the chromosome (Table 1).

  6. 6.

    In polytene nuclei of female hybrids from the crosses aaxbY or bbxaY, a and b are unpaired or incompletely paired in variable degrees (Figs. 7, 8a–e). The heterozygotic chromosome pair can be devided into 5 segments (I–V, Fig. 6), three of which are marked by clearly defined structural differences (I, III, V).

  7. 7.

    The pairing-segments II and IV, exhibiting an identical and parallel sequence of discs in a and b, allow six crossing-over recombinations (cb, db, eb, fb, gb, hb; comp. Figs. 9, 10). These new types of X-chromosomes occur in very different frequencies in the progeny of the hybrid ♀♀ when backcrossed to standard ♂♂ bY. The types eb and fb occur relatively rarely, while gb and hb are extremely rare (Figs. 9, 10, Table 2); in 70% of the progenies they are not present. The recombination-process is mainly restricted to pairing segment IV.

  8. 8.

    In a and in the crossover-chromosomes c, e, g very often a threadlike constriction appears in the region of α 2, resulting mostly in a pseudofragmentation with more or less independent location of the two chromosome parts (Figs. 3d, 8f-i, 11a). A variety of kinds of fusion between the parts and the autosomes, especially in their α-heterochromatin, is possible (Figs. 3e, 8g–i).

  9. 9.

    Lowering the breeding-temperature increases the duration of development, the size of the larvae, and the lengthening and euchromatization of the β-heterochromatic parts of the X-chromosomes. In the hybrids it also results in increasing the recombination rate (Table 3 and 4).

  10. 10.

    In the main experiments, hybrid offspring from the same parental pair, were raised at different temperatures: some individuals at high (20–26° C), others at low temperatures (2–8° C). The resulting two series of imagos were kept in optimal or room temperatures (14–22° C). The female progeny of 23 hybrids raised at elevated temperature and of 27 hybrids raised at low temperature, i.e. 1766 and 2102 X-chromosomes respectively, have been tested (Table 5, Fig. 12). No or only little recombination occurred in hybrids raised at 20–26° C (mean = 2.4%) in contrast to their sisters raised at 2–8° C, which gave a relative high frequency (mean = 18,2%).

  11. 11.

    In these cases only the first egg batches of each hybrid ♀ have been evaluated. Later progeny exhibits a reduction in crossing-over frequency in cold-raised hybrids with growing age. The mean rate of recombination of 14 hybrids is lowered from 16,6% in the first to 7,1% in the following progeny (n=1813; Table 6, Fig. 15) presumably as a consequence of keeping the imago in higher temperature.

  12. 12.

    The results from several larger groups of cold-raised sister hybrids more or less clearly demonstrate a bimodal distribution of recombination values (Fig. 13) suggesting a difference in recombination potentiality between the two X-chromosomes in the mother of the hybrids. Some data indicate the recombination rate in the X-chromosome as negatively correlated with the rate of development (Table 7).

  13. 13.

    The Mendelian ratio, 1∶1, of the non-recombinant types, ab and bb, is found in the progeny of the warm-raised hybrids (1769∶1778). This ratio is shifted considerably in favour of type ab in the case of low temperature hybrids (1996∶1626). In the recombinant types, cb and db, the ratio is always markedly shifted in favour of cb, irrespective of temperature (712:343). There must exist a causal relation between the Mendelian anomaly and the recombination process the nature of which is yet unknown.

  14. 14.

    The temperature at which a larva is raised effects both the frequency of crossing over and the stretching and euchromatization of β-heterochromatin in the polytene X-chromosome. This parallele suggests that structural changes comparable to those in the polytene chromosomes are induced by low temperature in meiotic chromosomes as well, and that these changes are responsible for the effect on the crossing-over frequency. These changes, which are reversible by age or temperature, are supposed to cause the extention of the “effective pairing” (as in euchromatic segments) on β-heterochromatic elements, which normally are unpaired.

  15. 15.

    The so-called “α-quantum-difference”, i.e. the difference in the amount of α-heterochromatin (or in the “relative DNA-content”) between the X-chromosomes is considered to be causally related to the crossing-over process (“α-differential-effect”). By way of a potential function it effects crossing over not only within the “α-differential” tetrad but also crossing over in non-homologous and unrelated pairs of chromosomes in the same meiotic cell.

  16. 16.

    This hypothesis was ascertained by two independent inversions in autosome 2 (In 2a and In 2b, Fig. 16) which permitted to test the influence of the “α-quantum-difference” in the X-chromosomes on crossing over in the autosome. In preliminary studies the progenies of 8 females (ab, bb, cb) and 3 males (aY, cY) of the heterozygous F1 backcrossed to homozygous b-stock have been investigated. In the progeny of the males only the parental combinations in autosome 2 were found. In the test cross progeny of the females the two expected types of recombination appeared (with only one inversion, In 2a or In 2b), but there existed a very high difference in linkage between bb- ♀♀ on the one side (3.6% crossing over) and ba- and bc-♀♀ on the other (40.2% crossing over).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Weitere, hier nicht aufgeführte Literatur s. bei Stern 1933, Swanson 1957, Wilson 1959a.

  • Ansley, H. R.: A cytological and cytophotometric study of alternative pathways of meiosis in the house centipede (Scutigera forceps Rafinesque). Chromosoma (Berl.) 6, 656–695 (1954); - A cytophotometric study of chromosome pairing. Chromosoma (Berl.) 8, 380–395 (1957).

    Google Scholar 

  • Baker, W.: Crossing over in Heterochromatin. Amer. Naturalist 92, 59–60 (1958).

    Google Scholar 

  • Bauer, H.: Gekoppelte Vererbung bei Phryne fenestralis und die Beziehung zwischen Faktorenaustausch und Chiasmabildung. Biol. Zbl. 65, 108–115 (1946).

    Google Scholar 

  • Beadle, G. W.: A possible influence of the spindle fibre on crossing over in Drosophila. Proc. nat. Acad. Sci. (Wash.) 18, 160–165 (1932).

    Google Scholar 

  • Bier, K.: Unterschiedliche Reproduktionsraten im Eu- und Heterochromatin: ein Weg zur Kerndifferenzierung? Verh. Dtsch. Zool. Saarbrücken 1961.

  • Boivin, A., R. Vendrely et C. Vendrely: L'acide désoxyribonucléique du noyau cellulaire, dépositaire des caractères héréditaires; arguments d'ordre analytique. C.R. Acad. Sci. (Paris) 226, 1061–1063 (1948).

    Google Scholar 

  • Carson, H. L.: The effects of inversions on crossing over in Drosophila robusta. Genetics 38, 168–186 (1953).

    Google Scholar 

  • Cooper, K. W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster and the theory of “heterochromatin”. Chromosoma (Berl.) 10, 535–588 (1959).

    Google Scholar 

  • —, S. Zimmering and J. Krivshenko: Interchromosomal effects and segregation. Proc. nat. Acad. Sci. (Wash.) 41, 911–914 (1955).

    Google Scholar 

  • Crouse, H. V.: The controlling element in sex chromosome behavior in Sciara. Genetics 45, 1429–1443 (1960).

    Google Scholar 

  • Davidson, D.: The effect of heat shocks on cell division. Chromosoma (Berl.) 9, 216–228 (1958).

    Google Scholar 

  • Elliott, C. G.: The effect of temperature on chiasma frequency. Heredity 9, 385–398 (1955).

    Google Scholar 

  • Fujii, S.: An evidence for the presence of inert regions in the autosomes of Drosophila virilis. Cytologia (Tokyo) 9, 177–184 (1938); - An abnormal staining capacity of the sixth salivary gland chromosome of a strain of Drosophila virilis. Cytologia (Tokyo) 10, 294–301 (1940).

    Google Scholar 

  • Grüneberg, H.: The position effect proved by a spontaneous reinversion of the X-chromosome of Drosophila melanogaster. J. Genet. 34, 69–90 (1937).

    Google Scholar 

  • Hasitschka-Jenschke, G.: Das Längenverhältnis der eu- und heterochromatischen Abschnitte riesenchromosomenartiger Bildungen verglichen mit dem der Prophase-Chromosomen bei Bryonia dioica. Chromosoma (Berl.) 12, 466–483 (1961).

    Google Scholar 

  • Heitz, E.: Die somatische Heteropyknose bei Drosophila melanogaster und ihre genetische Bedeutung. (Cytologische Untersuchungen an Dipteren. III.) Z. Zellforsch. 20, 237–287 (1933); - Über α- und β-Heterochromatin sowie Konstanz und Bau der Chromosomen bei Drosophila. Biol. Zbl. 54, 588–609 (1934).

    Google Scholar 

  • Höner, E.: Der Einfluß subletaler Temperaturen auf das crossing over in verschiedenen Entwicklungsstadien bei Weibchen von Drosophila melanogaster. Biol. Zbl. 55, 310–335 (1935).

    Google Scholar 

  • John, B., and B. Naylor: Anomalous chromosome behaviour in the germ line of Schistocerca gregaria. Heredity 16, 187–198 (1961).

    Google Scholar 

  • Jollos, V.: Dauermodifikationen und Mutationen bei Protozoen. Arch. Protistenk. 83, 197–219 (1934).

    Google Scholar 

  • Keyl, H.-G., u. K. Strenzke: Taxonomie und Cytologie von zwei Subspezies der Art Chironomus thummi. Z. Naturforsch., 11b, 727–735 (1956).

    Google Scholar 

  • Klingstedt, H.: Chromosomenstudien an Neuropteren I. Ein Fall von heteromorphen Chromosomenpaaren als Beispiel vom Mendeln der Chromosomen. Faun. et Flor. Fenn. 10, 1–11 (1933).

    Google Scholar 

  • Koske, T., and J. M. Smith: Linkage and cytology of autosome 5 (element 0) of Drosophila subobscura. Atti 9. Congr. internaz. genet. Bellagio (Como) 2, 1953, [Caryologia (Firenze) 6, Suppl., 785–789 (1954)].

  • Kraczkiewicz, Z., et B. Matuszewski: Observations sur une structure atypique des chromosomes salivaires de certains Cécidomyides. Chromosoma (Berl.) 9, 484–492 (1958).

    Google Scholar 

  • Levine, R. P., and E. Levine: The genotypic control of crossing over in Drosophila pseudoobscura. Genetics 39, 677–691 (1954).

    Google Scholar 

  • Mirsky, A. E., and H. Ris: Variable and constant components of chromosomes. Nature (Lond.) 163, 666–667 (1949).

    Google Scholar 

  • Morgan, L. V., Th. H. Morgan, C. B. Bridges and J. Schultz: Constitution of the germinal material in relation to heredity. Carnegie Inst. Wash. Yearbook 32, 298–302 (1933).

    Google Scholar 

  • Novitski, E.: Genetic measures of centromere activity in Drosophila melanogaster. J. cell. comp. Physiol. 45, 151–169 (1955).

    Google Scholar 

  • Offermann, C. A., and H. J. Muller: Regional differences in crossing over as a function of the chromosome structure. Proc. 6th Int. Congr. Genet. 2, 143–145 (1932).

    Google Scholar 

  • Ohno, S., W. D. Kaplan and R. Kinosita: Formation of the sex chromatin by a single X-chromosme in liver cells of Rattus norvegicus. Exp. Cell Res. 18, 415–418 (1959); - The basis of nuclear sex difference in somatic cells of the Opossum didelphis virginiata. Exp. Cell Res. 19, 417–420 (1960); - Female germ cells of man. Exp. Cell Res. 24, 106–110 (1961).

    Google Scholar 

  • S. Makino: The single-X nature of sex chromatin in man. Lancet, 1961, 78–79.

  • Oksala, T.: Chromosome pairing, crossing over, and segregation in meiosis in Drosophila melanogaster females. Cold Spr. Harb. Symp. quant. Biol. 23, 197–210 (1958).

    Google Scholar 

  • Panitz, R.: Die cytologischen und genetischen Konsequenzen von Inversionen. Ergebn. Biol. (Berl.) 22, 137–211 (1960).

    Google Scholar 

  • Poulson, D. F., and Ch. W. Metz: Studies on the structure of nucleolus-forming regions and related structures in the giant salivary gland chromosomes of Diptera. J. Morph. 63, 363–382 (1938).

    Google Scholar 

  • Prokofyeva-Belgovskaya, A. A.: Heterochromatization as a change of chromosome cycle. J. Genet. 48, 80–98 (1947).

    Google Scholar 

  • Ramel, C.: Interchromosomal effects of inversions in Drosophila melanogaster. I. Crossing-over. Hereditas 48, 1–58 (1962).

    Google Scholar 

  • Rendel, J. M.: The effect of age on the relationship between coincidence and crossing over in Drosophila melanogaster. Genetics 43, 207–214 (1958).

    Google Scholar 

  • Rudkin, G. T., and S. L. Corlette: Disproportionate synthesis of DNA in a polytene chromosome region. Proc. nat. Acad. Sci. (Wash.) 43, 964–968 (1957).

    Google Scholar 

  • Schultz, J.: The evidence of the nucleoprotein nature of the gene. Cold Spr. Harb. Symp. quant. Biol. 9, 55–65 (1941).

    Google Scholar 

  • —, and D. A. Hungerford: Characteristics of pairing in the salivary gland chromosomes of Drosophila melanogaster. Genetics 38, 689 (1953).

    Google Scholar 

  • —, and H. Redfield: Interchromosomal effects on crossing over in Drosophila. Cold Spr. Harb. Symp. quant. Biol. 16, 175–195 (1951).

    Google Scholar 

  • Seiler, J.: Ergebnisse aus Kreuzungen von Schmetterlingsrassen mit verschiedener Chromosomenzahl. Ein Beweis für das Mendeln der Chromosomen. Arch. Julius-Klaus-Stift. 1, 63–117 (1925).

    Google Scholar 

  • Stern, C.: Faktorenkoppelung und Faktorenaustausch. In Handbuch der Vererbungswissenschaften III. Berlin: H. Borntraeger 1933.

    Google Scholar 

  • Stich, H. F., and J. M. Naylor: Variation of desoxyribonucleic acid content of specific chromosome regions. Exp. Cell Res. 14, 442–445 (1958).

    Google Scholar 

  • Swanson, C. P.: Cytology and Cytogenetics. New York: Prentice-Hall, Inc. 1957.

    Google Scholar 

  • Tobias, P. V.: Chromosomes, sex-cells and evolution in a mammal. London: P. Lund, Humphries & Co. 1956.

    Google Scholar 

  • White, M. J. D.: The influence of temperature on chiasma frequency. J. Genet. 29, 203–215 (1934); - The cytology of the Cecidomyidae (Diptera). IV. The salivary gland chromosomes of several species. J. Morph. 82, 53–80 (1948); - Animal cytology and evolution. Cambridge: Cambridge Univ. Press 1954.

    Google Scholar 

  • Wilson, J. Y.: Chiasma frequency in relation to temperature. Genetica 29, 290–303 (1959a); - Changes in the distribution of chiasmata in response to experimental factors in the bluebell, Endymion nonscriptus (L.) Garcke. Genetica 30, 417–434 (1959b).

    Google Scholar 

  • Wolf, B. E.: Die Chromosomen in der Spermatogenese der Dipteren Phryne und Mycetobia. Chromosoma (Berl.) 4, 148–204 (1950); - Numerische und strukturelle Variation der Geschlechts- und überzähligen Chromosomen bei der Mücke Phryne cincta. Verh. Dtsch. Zool. Tübingen 1954; - Nachweis eines lokalisierten Chromatidenstückaustausches im X-Chromosom von Phryne cincta mit Hilfe der Speicheldrüsenanalyse. Verh. Dtsch. Zool. Hamburg 1956; - Temperaturabhängige Allozyklie des polytänen X-Chromosoms in den Kernen der Somazellen von Phryne cincta. Chromosoma (Berl.) 8, 396–435 (1957); - Y-Chromosom und überzählige Chromosomen in den polytänen Somakernen von Phryne cincta M. (Diptera). Verh. Dtsch. Zool. Saarbrücken 1961.

    Google Scholar 

  • - u. E. Struck: Nachweis des Mendelns von Chromosomen und eines autosomalen Chromatidenstückaustauschs bei der Mücke Phryne cincta mit Hilfe der Speichel- drüsenanalyse. XI. Int. Kongr. Entomol., Wien, 1960, S. 428–430.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr. Emil Heitz zu seinem 70. Geburtstag am 29. Oktober 1962 gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erich Wolf, B. Kontrolle des crossing over vom temperatur-bedingten Allozykliegrad und vom α-Heterochromatin des X-Chromosoms bei Phryne cincta . Chromosoma 13, 646–701 (1963). https://doi.org/10.1007/BF00325983

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325983

Navigation