Skip to main content
Log in

Cordierites from the Lepontine Alps: Na + Be → Al substitution, gas content, cell parameters, and optics

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Na, Be cordierites (Alpe Sponda) and normal Na-, Be-poor cordierites (Miregn) from the same tectonic unit are compared. The Alpe Sponda samples (Na2O: 1.1–1.5 wt.%, BeO: 0.6–0.8 wt.%), which occur in paragonite mica schists, reveal low optic angles (2V x : 45°–55°) and low distortion indices (Δ: 0.139–0.172). Chemical analyses suggest a substitution of the type Na + Be → Al. Heating in a reducing atmosphere expels the volatile channel occupants and increases 2 V x to 72.4°–73.9° and Δ to 0.194–0.223.

The normal cordierites from Miregn replace kyanite and occur in biotite mica schists interbedded with leucocratic layers. These specimens exhibit optic angles between 64° and 79°; Δ ranges between 0.232 and 0.250.

The gas contents (2.0 and 2.3 wt.%) of cordierites from Alpe Sponda are significantly higher than in the Miregn samples (1.5 and 1.8 wt.%). IR spectra show that H2O is the major component in both localities and CO2 does not exceed 0.4 wt.%. Degassed Na, Be cordierites have higher refractive indices than degassed normal cordierites with the same F-value (F[mol] = (Fe + Mn)/(Fe + Mn + Mg)). This behavior is mainly caused by smaller cell dimensions and increased density due to the Na + Be → Al substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster Th, Bloss FD (1980) Channel CO2 in cordierites. Nature 286:140–141

    Google Scholar 

  • Armbruster Th, Bloss FD (1981) Mg-cordierites: Si/Al ordering, optical properties, and distortion. Contrib Mineral Petrol 77:332–336

    Google Scholar 

  • Armbruster W, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierites. Am Mineral 67:284–291

    Google Scholar 

  • Bakakin W, Rylov GM, Belov NV (1967) Correlation between the chemical composition and unit cell parameters of beryls (in russ.) Akad Nauk SSSR Doklady 173:1404–1407

    Google Scholar 

  • Bakakin VV, Rylov GM, Belov NV (1969) Crystal structure of Lithium-bearing beryl (in russ.) Akad Nauk SSSR Doklady 188:659–662

    Google Scholar 

  • Bakakin VV, Rylov GM, Belov NV (1970) X-Ray diffraction data for identification of beryl isomorphs (in russ.) Geokhimiya II:1302–1311

    Google Scholar 

  • Bloss FD (1981) The Spindle Stage: principles and practice. Cambridge University Press, Cambridge, 340 pp

    Google Scholar 

  • Bloss FD, Armbruster Th (1982) Gladstone-Dale constants for channel H2O and CO2 in cordierite. Can Mineral 20:55–58

    Google Scholar 

  • Carson DG, Rossmann GR, Vaughan RW (1982) Orientation and motion of water molecules in cordierite: A proton nuclear magnetic resonance study. Phys Chem Minerals 8:14–19

    Google Scholar 

  • Černý, P, Povondra P (1966) Beryllian cordierite from Věžna: (Na, K) + Be → Al. Neues Jahrb Mineral Monatsh 44:36–44

    Google Scholar 

  • Frey M, Bucher K, Frank E, Mullis J (1980) Alpine metamorphism along the geotraverse Basel — Chiasso — a review. Eclogae geol Helv 73:527–546

    Google Scholar 

  • Gibbs GV (1966) The polymorphism of cordierite I: Crystal structure of low cordierite. Am Mineral 51:1068–1087

    Google Scholar 

  • Ginsburg AI, Stawrow OD (1961) Content of rare elements in cordierite. Geokhimiya 183–185

  • Goldman DS, Rossmann GR, Dollase WA (1977) Channel constituents in cordierite. Am Mineral 62:1144–1157

    Google Scholar 

  • Hochella MF, Brown GE, Ross FK, Gibbs GV (1979) High temperature crystal chemistry of hydrous Mg and Fe-cordierites. Am Mineral 64:337–351

    Google Scholar 

  • Hörmann PL, Raith M, Raase P, Ackermand D, Seifert F (1980) The granulitic complex of Finnish Lapland: Petrology and metamorphic conditions in the Ivalojoki-Inarijärvi area. Finland Geol Survey Bull 308:1–95

    Google Scholar 

  • Irouschek A (1978) Untersuchungen an Metapeliten der Campo Tencia-Masse unter Berücksichtigung des Na-Gehaltes von Muskovit. Diplomarbeit Univ Basel

  • Irouschek A (1980) Zur Verbreitung von Cordierit im zentralen Lepontin. Schweiz Mineral Petrogr Mitt 60:137–144

    Google Scholar 

  • Irouschek A (1983) Mineralogie und Petrographie von Metapeliten unter besonderer Berücksichtigung von cordieritführenden Gesteinen in der Simano Decke zwischen Alpe Sponda und Biasca. Dissertation, Univ. Basel

  • Johannes W, Schreyer W (1981) Experimental introduction of CO2 and H2O into Mg-cordierite. Am J Sci 281:299–317

    Google Scholar 

  • Kokscharow v N (1858) Materialien zu Mineralogie Rußlands. Band 3, St. Petersburg

  • Lepezin GG, Kuznetsova IK, Lavrenten'ev YuG, Chmel'nicova OS (1976) Optical methods of determination of the water contents in cordierites. Contrib Mineral Petrol 58:319–329

    Google Scholar 

  • Meagher EP (1967) The crystal structure and polymorphism of cordierite. Ph.D. Dissertation, The Pennsylvania State University, University Park, Pennsylvania

    Google Scholar 

  • Meagher EP, Gibbs GV (1966) Crystal structure and polymorphism of cordierite. (Abs) Geol Soc Am Ann Meet Kansas City: 105

  • Meagher EP, Gibbs GV (1977) The polymorphism of cordierite. II. The crystal structure of indialite. Can Mineral 15:43–49

    Google Scholar 

  • Medenbach O, Maresch WV, Mirwald PW, Schreyer W (1979) Optische Bestimmung des H2O-Gehalts synthetischer Mg-Cordierite. Fortschr Mineral 57, Beiheft 1:99–101

    Google Scholar 

  • Medenbach O, Maresch WV, Mirwald PW, Schreyer W (1980) Variation of refractive index in synthetic Mg-cordierite with H2O. Am Mineral 65:367–373

    Google Scholar 

  • Mirwald PW (1981) Thermal expansion of anhydrous Mg-cordierite between 25 and 950° C. Phys Chem Minerals 7:268–270

    Google Scholar 

  • Mirwald PW (1982) A high-pressure phase transition in cordierite. Am Mineral 67:277–283

    Google Scholar 

  • Miyashiro A (1957) Cordierite-indialite relations. Am J Sc 255:43–62

    Google Scholar 

  • Newton RC (1966) BeO in pegmatitic cordierite. Mineral Mag 35:920–927

    Google Scholar 

  • Povondra P, Langer K (1971) Synthesis and some properties of sodium-beryllium bearing cordierite. NaxMg2(Al4−xBex Si5O18). Neues Jahrb Mineral Abh 116:1–19

    Google Scholar 

  • Putnis A (1980a) Order-modulated structures and the thermodynamics of cordierite. Nature 287:128–131

    Google Scholar 

  • Putnis A (1980b) The distortion index in anhydrous Mg-cordierite. Contrib Mineral Petrol 74:135–141

    Google Scholar 

  • Schreyer W (1965) Synthetische und natürliche Cordierite II. Die chemischen Zusammensetzungen natürlicher Cordierite und ihre Abhängigkeit von den PTX-Bedingungen bei der Gesteinsbildung. Neues Jahrb Abh 103:35–79

    Google Scholar 

  • Schreyer W, Schairer JF (1961) Composition and structural states of anhydrous Mg-Cordierites; A reinvestigation of the central part of the system MgO-Al2O3-SiO2. J Petrol 2:324–406

    Google Scholar 

  • Schreyer W, Gordillo CE, Werding G (1979) A new sodian-beryllian cordierite from Soto, Argentina, and the relationship between distortion index, Be-content and state of hydration. Contrib Mineral Petrol 70:421–428

    Google Scholar 

  • Seifert F, Schreyer W (1970) Lower temperature stability limit of Mg-cordierite in the range 1–7 kbar water pressure. A redetermination. Contrib Mineral Petrol 27:225–238

    Google Scholar 

  • Selkregg K, Bloss FD (1980) Cordierites: compositional controls of Δ, cell parameters and optical properties. Am Mineral 65:522–533

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B25:925–946

    Google Scholar 

  • Speer JA (1981) Petrology of cordierite- and almandine-bearing granitoid plutons of the Southern Appalachian Piedmont, USA. Can Mineral 19:35–46

    Google Scholar 

  • Suknev VS, Kizul VI, Lazebnik YuD, Brovkin AA (1971) On presence and quantitative evaluation of CO2 in cordierites in the light of infrared spectroscopic data and chemical analyses (in russ.). Akad Nauk SSSR Doklady 200:950–952

    Google Scholar 

  • Takeda H (1967) Determination of the layer stacking sequence of a new complex mica polytype: A 4-layer lithium fluorophlogopite. Acta Crystallogr 22:845–853

    Google Scholar 

  • Wallace JH, Wenk HR (1980) Structure variation in low cordierites. Am Mineral 65:96–111

    Google Scholar 

  • Wenk E (1968) Cordierit im Val Verzasca. Schweiz Mineral Petrol Mitt 48:455–457

    Google Scholar 

  • Wenk E (1969) Zur Regionalmetamorphose und Ultrametamorphose im Lepontin. Fortschr Mineral 47:34–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. E. Wenk on his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armbruster, T., Irouschek, A. Cordierites from the Lepontine Alps: Na + Be → Al substitution, gas content, cell parameters, and optics. Contrib Mineral Petrol 82, 389–396 (1983). https://doi.org/10.1007/BF00399715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399715

Keywords

Navigation