Skip to main content
Log in

The system Fe-Si-O: Oxygen buffer calibrations to 1,500K

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations.

The reaction parameters K, ΔG or , ΔH or , and ΔS or were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\)/T relations (T in K):

$$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$

These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T−\(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters.

The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbi GB (1964) The stability of wustite by electromotive force measurements on all-solid electrolytic cells. J Phys Chem 68:2912–2916

    Google Scholar 

  • Bowen NL, Schairer JF (1932) The system FeO-SiO2. Am Jour Sci 224:173–213

    Google Scholar 

  • Bransky I, Tannhauser DS (1967) High-temperature defect structure of ferrous oxide. Trans Metal Soc AIME 239:75–80

    Google Scholar 

  • Burnham CW, Holloway JR, Davies NF (1969) Thermodynamic properties of water to 1,000° C and 10,000 bars. Geol Soc Am Spec Pap 132

  • Carmichael ISE (1967) The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contrib Mineral Petrol 114:36–64

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Ifneous petrology. McGraw-Hill, New York, p 739

    Google Scholar 

  • Chipman J, Marshall S (1940) The equilibrium FeO+H2 = Fe+H2O at temperatures up to the melting point of iron. J Am Chem Soc 62:299–305

    Google Scholar 

  • Chou IM (1978) Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor. Am Min 63:690–703

    Google Scholar 

  • Chou IM, Eugster HP (1976) A sensor for hydrogen fugacities at elevated P and T and applications. EOS Trans Am Geophys Union 57:340

    Google Scholar 

  • Darken LS (1948) Melting points of iron oxides on silica; Phase equilibria in the system Fe- Si-O as a function of gas composition and temperature. J Am Chem Soc 70:2046–2053

    Google Scholar 

  • Darken LS, Gurry RW (1945) the system iron-oxygen I, the wustite field and related equilibria. J Am Chem Soc 67:1398

    Google Scholar 

  • Darken LS, Gurry RW (1946) The system iron-oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68:798–816

    Google Scholar 

  • Emmett PH, Schultz JF (1933) Gaseous thermal diffusion. The principal cause of discrepancies among equilibrium measurements on the system Fe3O4 -H2 -Fe -H2O, Fe3O4-H2-FeO-H2O and FeO-H2-H2O J Am Chem Soc 55:1376–1389

    Google Scholar 

  • Ernst WG (1960) The stability relations of magnesioriebeckite. Geochim Cosmochim Acta 19:10–40

    Google Scholar 

  • Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high temperatures and pressures. J Chem Phys 26:1760–1761

    Google Scholar 

  • Eugster HP (1959) Reduction and oxidation in metamorphism. In Researches in Geochemistry. In: Abelson PH (ed). John Wiley, New York: 397–426

    Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferruginous biotite annite. J Petrol 3:82–125

    Google Scholar 

  • Frantz JD, Eugster HP (1973) Acid-base buffers: use of Ag + AgCl in the experimental control of solution equilibria at elevated pressures and temperatures. Am J Sci 273:268–286

    Google Scholar 

  • Gronvold F, Samuelsen EJ (1975) Heat capacity and thermodynamic properties of γ-Fe2O3 in the region 300–1050 K. Jour Phys and Chem Solids 36:249–256

    Google Scholar 

  • Gronvold F, Sveen A (1974) Heat capacity and thermodynamic properties of synthetic magnetite from 300 to 1,050 K. J Chem Thermodynamics 6:859–872

    Google Scholar 

  • Gunter WD, Myers J, Wood JR (1979) The Shaw bomb, an ideal hydrogen sensor. Contrib Mineral Petrol 70:23–27

    Google Scholar 

  • Haas JL, Fisher JR (1976) Simultaneous evaluation and correlation of thermodynamic data. Am Jour Science 276:525–545

    Google Scholar 

  • Haas, JL, Robie RA (1973) Thermodynamic data for wustite, magnetite and hematite (abstr.) Trans Am Geophys Union 54:483

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am Jour Sci 278-A: 1–229

    Google Scholar 

  • Hewitt DA (1978) A redetermination of the fayalite-magnetite-quartz equilibrium between 650° and 850° C. Am J Sci 278:715–724

    Google Scholar 

  • Huebner JS (1971) Buffering techniques for hydrostatic systems at elevated pressures. In: Research techniques for high pressure and high temperature In: Ulmer GC (ed). Springer-Verlag, New York: 123–177

    Google Scholar 

  • Huebner JS (1975) Oxygen fugacity values of furnace gas mixtures. Am Mineral 60:815–823

    Google Scholar 

  • Huebner JS, Sato M (1970) The oxygen fugacity-temperature relationships of manganese oxide and nickel oxide buffers. Am Mineral 55:934–952

    Google Scholar 

  • Humphrey GL, King EG, Kelley KK (1952) Some thermodynamic values for ferrous oxide. Bureau of Mines Report of Investigations 4870

  • Jette ER, Foote F (1932) An x-ray study of the wustite solid solutions. J Chem Phys 1:29–37

    Google Scholar 

  • Kennedy GC (1948) Equilibrium between volatiles and iron oxides in igneous rocks. Am J Sci 246:529–549

    Google Scholar 

  • Kleman M (1965) Propriétés thermodynamiques du protoxyde de fer sous forme solide. Application des résultats expérimentaux au trace du diagramme d'équilibre. Mem Sci Rev Metall 26:457–469

    Google Scholar 

  • Koch F, Cohen JB (1969) The defect structure of Fe1−xO. Acta Cryst B 25:275

    Google Scholar 

  • Levine RL, Wagner JB (1966) Lattice-parameter measurements of undoped and chromium-doped wustite. Trans Metal Soc AIME 236:516–519

    Google Scholar 

  • Muan A (1955) Phase equilibria in the system FeO-Fe2O3 -SiO2. J Metal 7:1–12

    Google Scholar 

  • Myers J, Gunter WD (1979) Measurement of the oxygen fugacity of the cobalt-cobalt oxide buffer assemblage. Am Mineral 64:224–228

    Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647

    Google Scholar 

  • Phillips B, Muan A (1960) Stability relations of iron oxides: phase equilibria in the system Fe3O4-Fe2O3 at oxygen pressures up to 45 atmospheres. J Phys Chem 64:1451–1453

    Google Scholar 

  • Rizzo HF, Gordon, RS, Cutler IB (1969) The determination of phase boundaries and thermodynamic functions in the iron-oxygen system by EMF measurements. J Electrochem Soc 116:266–274

    Google Scholar 

  • Robie RA, Finch CB, Hemingway BS (1982) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383K: comparison of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463–469

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.1/dg K and 1 bar pressure and at higher temperatures. US Geol Surv Bull 1452:456

    Google Scholar 

  • Salmon ON (1961) High temperature thermodynamics of the iron oxide system. J Am Chem Soc 65:550–556

    Google Scholar 

  • Sato M (1976) Oxygen fugacity and other thermochemical parameters of Apollo 17 high-Ti basalts and their implications on the reduction mechanism. Proc Lunar Sci Conf 7th, 1323–1344

  • Schenck R, Dingmann T, Kirscht PH, Wesselcock H (1929) Gleichgewichtsuntersuchungen über die Reduktions-, Oxydations- und Kohlungsvorgänge beim Eisen VIII. System Eisen-Sauerstoff. Z Anorg Allg Chem 182:97–117

    Google Scholar 

  • Shaw HR (1963) Hydrogen-water vapor mixtures: control of hydrothermal experiments by hydrogen osmosis. Science 139:1220–1222

    Google Scholar 

  • Shaw HR (1967) Hydrogen osmosis in hydrothermal experiments. In: Abelson PH. Researches in Geochemistry 2. John Wiley, New York: 521–541

    Google Scholar 

  • Shaw HR, Wones DR (1964) Fugacity coefficients for hydrogen gas between 0 and 1,000° C, for pressures up to 3,000atm. Am J Sci 262:918–929

    Google Scholar 

  • Swaroop B, Wagner JB (1967) On the vacancy concentrations of wustite near the p to n transition. Trans Metal Soc AIME 239:1215–1218

    Google Scholar 

  • Vallet P, Raccah P (1965) Contribution à l'étude des propriétés thermodynamiques du protoxyde de fer solide. Mem Scien Rev Metall 62:1–29

    Google Scholar 

  • Wicks CE, Block FE (1963) Thermodynamic properties of 65 elements — their oxides, halides, carbides and nitrides. Bull 605, Bureau of Mines

  • Williams RJ (1971) Reaction constants in the system Fe-MgO-SiO2-O2: I. Experimental results. Am J Sci 270:334–360

    Google Scholar 

  • Wones DR, Gilbert MC (1969) The fayalite-magnetite-quartz assemblage between 600° and 800° C. Am Jour Sci 267-A: 480–488

    Google Scholar 

  • Wyckoff RWG, Crittenden ED (1925) The preparation and crystal structure of ferrous oxide. J Am Chem Soc 47:2876–2882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, J., Eugster, H.P. The system Fe-Si-O: Oxygen buffer calibrations to 1,500K. Contr. Mineral. and Petrol. 82, 75–90 (1983). https://doi.org/10.1007/BF00371177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371177

Keywords

Navigation