Skip to main content
Log in

Systematic use of trace elements in igneous processes

Part II. Inverse problem of the fractional crystallization process in volcanic suites

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Trace element concentration data can be used in a systematic way for the study of igneous processes by means of constructing models of such processes which satisfactorily account for the observations. We propose to treat the problem as an inverse problem. The concept of trace element paths (TEP) is introduced as a representation of the solution to the direct problem. The inverse problem consists of estimating, by a resolution of the equations, the various parameters of a model so as to provide a best fit to observed TEP. A detailed account of the theory is given in the case of equilibrium fractional crystallization. The estimated parameters are then those figuring in the Rayleigh distillation law, namely, 1) the initial concentrations of trace elements in the parental magma, 2) the bulk partition coefficients of the elements, and 3) the degree of crystallization corresponding to each sample of the magmatic suite analyzed.

A slightly generalized maximum likelihood method is used to solve the linearized equation by a stable, iterative algorithm. Information theory is then shown to yield an account of the distribution and flow of information during the process of solving the inverse problem. The concept of Data Importances is generalized, and its use in optimizing the study justified. The technique is successfully applied to a synthetic data set, and then illustrated on a data set from Terceira (Azores). The results are used to refine the conclusions reached in part I, and permit a more detailed discussion of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albarède, F.: Some trace element relationships among liquid and solid phases in the course of the fractional crystallization of magmas. Geochim. Cosmochim. Acta 40, 667–673 (1976)

    Google Scholar 

  • Allègre, C.J., Treuil, M., Minster, J.F., Minster, J.B., Albarède, F.: Systematic use of trace elements in igneous processes. Part I. Fractional crystallization processes in volcanic suites. Contrib. Mineral. Petrol. 60, 57–75 (1977)

    Google Scholar 

  • Allègre, C.J., Minster, J.F., Minster, J.B., Treuil, M.: Inverse problems in trace element geochemistry: The partial melting case (Abstract). 4ème Réunion Annuelle des Sciences de la Terre, Paris (1976b)

  • Anderson, A.T., Greenland, L.P.: Phosphorus fractionation diagram as a quantitative indicator of crystallization differentiation of basaltic liquids. Geochim. Cosmochim. Acta 33, 493–505 (1969)

    Google Scholar 

  • Backus, G., Gilbert, F.: Numerical applications of a formalism for geophysical inverse problems. Geophys. J. 13, 247 (1967)

    Google Scholar 

  • Backus, G., Gilbert, F.: The resolving power of gross earth data. Geophys. J. 16, 169–205 (1968)

    Google Scholar 

  • Backus, G., Gilbert, F.: Uniqueness in the inversion of inaccurate gross earth data. Phil. Trans. Roy. Soc. London, Ser. A 266, 123–192 (1970)

    Google Scholar 

  • Bjerhammar, A.: Theory of errors and generalized matrix inverses. Amsterdam: Elsevier 1973

    Google Scholar 

  • Boyd, F.R., Nixon, P.H.: Ultramafic nodules from the Thaba Putsoa Kimberlite Pipe. Carnegie Inst. Wash. Year Book 71, 362–373 (1972)

    Google Scholar 

  • Brillouin, L.: Science and information theory. New York-London: Academic Press 1962

    Google Scholar 

  • Dumas de Rauly, D.: L'estimation statistique. Paris: Gauthiers-Villars 1968

    Google Scholar 

  • Fisher, R.A.: Theory of statistical estimation. Proc. Cambridge Phil. Soc. 22, 700 (1925)

    Google Scholar 

  • Gast, P.W.: Trace element fractionation and the origin of tholeitic and alkaline magma types. Geochim. Cosmochim. Acta 32, 1057–1086 (1968)

    Google Scholar 

  • Goldman, S.: Information theory. New York: Prentice Hall 1953

    Google Scholar 

  • Greenland, L.P.: An equation for trace element distribution during magmatic crystallization. Am. Mineralogist 55, 455–465 (1970)

    Google Scholar 

  • Jackson, D.D.: Interpretation of inaccurate, insufficient and inconsistent data. Geophys. J. 28, 97–109 (1972)

    Google Scholar 

  • Jordan, T. H.: Estimation of the radial variation of seismic velocities and density in the earth. Ph. D. Thesis, California Institute of Technology (1973)

  • Keilis-Borok, V.I., Yanovskaya, T.B.: Inverse problems of seismology. Geophys. J. 13, 223 (1967)

    Google Scholar 

  • Le Mouël, J.L., Courtillot, V., Ducruix, J.: A solution of some problems in potential theory. Geophys. J. 42, 251–272 (1975)

    Google Scholar 

  • Linnik, Y.: Méthode des moindres carrés. Eléments de la théorie du traitement statistique des observations. Paris: Dunod 1963

    Google Scholar 

  • Loubet, M., Shimizu, N., Allègre, C.J.: Rare earth elements in Alpine Peridotite. Contrib. Mineral. Petrol. 53, 1–12 (1975)

    Google Scholar 

  • McIntire, W.L.: Trace element partition coefficients, a review of theory and applications to geology. Geochim. Cosmochim. Acta 27, 1209–1264 (1963)

    Google Scholar 

  • Minster, J.B., Jordan, T.H., Molnar, P., Haines, E.: Numerical modelling of instantaneous plate tectonics. Geophys. J. 36, 541 (1974)

    Google Scholar 

  • Neumann, H., Mead, J., Vitaliano, C.J.: Trace element variation during fractional crystallization as calculated from the distribution law. Geochim. Cosmochim. Acta 6, 90–100 (1954)

    Google Scholar 

  • Press, F.: Earth models obtained by Monte Carlo Inversion. J. Geophys. Res. 73, 5223 (1968)

    Google Scholar 

  • Provost, A., Allègre, C. J.: Systematic use of major elements in igneous processes. Part I. Fractional crystallization process. In preparation

  • Schilling, J.G., Winchester, J.W.: Rare earth fractionation and magmatic processes. In: Mantles of earth and terrestrial planets. (S.K. Runcorn, F.R.S. Runcorn, ed.), p. 267. New York: Wiley 1967

    Google Scholar 

  • Shannon, C.E., Weaver, W.: The mathematical theory of communication. Urbana: Univ. of Illinois Press 1969

    Google Scholar 

  • Shaw, D.M.: Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 34, 237–243 (1969)

    Google Scholar 

  • Shimizu, N., Arculus, R.J.: Rare earth elements concentrations in a suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles. Contrib. Mineral. Petrol. 50, 231–240 (1975)

    Google Scholar 

  • Treuil, M.: Critères pétrologiques, géochimiques et structuraux de la genèse et de la différentiation des magmas basaltiques: Exemple de l'Afar. Thèse de Doctorat d'Etat és Sciences, Université d'Orleans (1973)

  • Treuil, M., Joron, J.L.: Utilisation des eléments hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques: Exemple de l'Afar et de la Dorsale Médio-Atlantique. Soc. Ital. Mineral. Petrol. Milano 31, 125–174 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at Dept. Geological and Planetary Sciences, California Institute of Technology, Pasadena, Calif., USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minster, J.F., Minster, J.B., Treuil, M. et al. Systematic use of trace elements in igneous processes. Contr. Mineral. and Petrol. 61, 49–77 (1977). https://doi.org/10.1007/BF00375945

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375945

Keywords

Navigation