Skip to main content
Log in

Stability of the scapolite meionite (3CaAl2Si2O2 · CaCO3) at high pressures and storage of CO2 in the deep crust

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The stability field of the end-member scapolite meionite was determined in piston-cylinder apparatus. Meionite has very high thermal stability at high pressures, exceeding 1500° C at 20 kbar. Below 6 kbar and 1270 ° C scapolite breakdown is subsolidus, to an-orthite + gehlenite + wollastonite + CO2, with a slope of 20 bars/degree. An extrapolation of existing thermodynamic data for CO2 permits calculation of ΔG oF =-2384.5 kcal/mol for meionite at 1270 ° C, very close to the value for 3 anorthite + calcite. Above 1270 ° C, scapolite begins to melt to An+Geh+Liq+CO2, and as pressure increases the melting curve steepens, the Geh and An being progressively replaced by Liq+corundum with Al in 6-coordination. At pressures >25kbar dp/dt becomes negative, corundum is the only crystalline product, and CO2 bubbles disappear from the quenched glass, indicating a solubility of CO2 under these conditions of about 5 wt. percent in the liquid.

The subsolidus breakdown of meionite at high pressures to grossularite + kyanite + quartz + calcite nearly coincides with the upper pressure limits of anorthite. Thus scapolite is essentially limited to crustal rocks. In view of its great thermal stability, meionite can play a role as a primary mineral in deep-seated basic or intermediate magmatic processes. It is also likely that CO2 coming from the earth's interior will be captured by reaction with plagioclase and clinopyroxene. Scapolite has been noted in basic granulite inclusions from basaltic pipes in three continents. It seems probable that scapolite acts as a major storage site for CO2 in the deep crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bobrievich, A. P., Sobolev, U. S.: Eclogitization of the pyroxene crystalline schists of the Archean complex (in Russian). Zap. Vses. Mineralog. Obshchestva, V. Ser. 86, 3–17 (1957)

    Google Scholar 

  • Borchert, H.: Zur Geochimie des Kohlenstoffs. Geochim. Cosmochim. Acta 2, 62–75 (1951)

    Google Scholar 

  • Brögger, W. C.: On several Archaean rocks from the south coast of Norway. Pt. I. Skrifter Norske Videnskaps-Akad. Oslo, Mat.-Naturv. Kl, No. 8 (1933)

  • Burnham, C. W.: Lattice constant refinement. Ann. Rept. of the Dir. of the Geophysical Lab., Carnegie Inst. Wash. Yearbook 61, 132–135 (1962)

    Google Scholar 

  • Cox, K. G., Gurney, J. J., Harte, B.: Xenoliths from the Matsoku pipe. In: Lesotho kimberlites. P. H. Nixon, ed., Lesotho National Development Corp. Maseru, 76–100 (1973)

    Google Scholar 

  • Dawson, J. B.: Carbonate tuff cones in northern Tanganyika. Geol. Mag. 101, 129–137 (1964)

    Google Scholar 

  • Dawson, J. B.: Recent researches on kimberlite and diamond geology. Economic Geol. 63, 504–511 (1968)

    Google Scholar 

  • Dawson, J. B.: Advances in kimberlite geology. Earth-Sci. Rev. 7, 187–214 (1971)

    Google Scholar 

  • Eugster, H. P., Prostka, H. J.: Synthetic scapolites. Bull. Geol. Soc. Am. 71, 1858 (1960) (Abstract)

    Google Scholar 

  • Eugster, H. P., Prostka, H. J., Appleman, D. E.: Unit-cell dimensions of natural and synthetic scapolites. Science 137, 853–854 (1962)

    Google Scholar 

  • Gibbs, G. V., Bloss, F. D.: Indexed powder diffraction data for scapolite. Am. Mineralogist 46, 1493–1497 (1961)

    Google Scholar 

  • Goldsmith, J. R., Heard, H. C.: Subsolidus phase relations in the system CaCO3-MgCO3. J. Geol. 69, 45–74 (1961)

    Google Scholar 

  • Hariya, Y., Kennedy, G. C.: Equilibrium study of anorthite under high pressure and temperature. Am. J. Sci. 266, 193–203 (1968)

    Google Scholar 

  • Irving, A. J.: Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipes, Australia. J. Petrol. 15, 1–40 (1974)

    Google Scholar 

  • Kushiro, I.: Wollastonite-pseudowollastonite inversion. Ann. Rept. of the Dir. of the Geopysical Lab., Carnegie Inst. Wash. Yearbook 23, 83–84 (1964)

    Google Scholar 

  • Kushiro, I., Yoder, H. S.: Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation. J. Petrol. 7, 337–362 (1966)

    Google Scholar 

  • Lovering, J. F., White, A. J. R.: The significance of primary scapolite in granulitic inclusions from deep-seated pipes. J. Petrol. 5, 195–218 (1964)

    Google Scholar 

  • Lovering, J. P., White, A. J. R.: Granulitic and eclogitic inclusions from basic pipes at Delegate, Australia. Contrib. Mineral. Petrol. 21, 9–52 (1969)

    Google Scholar 

  • Millhollen, G. L.: Synthesis of scapolite under magmatic conditions. Am. Mineralogist 59, 618–620 (1974)

    Google Scholar 

  • Misch, P.: Stable association wollastonite-anorthite and other calc-silicate assemblages in amphibolite facies crystalline schists of Nanga Parbat, northwest Himalayas. Beitr. Mineral. Petrog. 10, 315–356 (1964)

    Google Scholar 

  • Robie, R. A., Waldbaum, D. R.: Thermodynamic properties of minerals and related substances at 198.15 K (25.0° C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U. S. Geol. Surv. Bull. 1259, 256 pp. (1968)

    Google Scholar 

  • Ronov, A. B., Yaroshevskiy, A. A.: Chemical structure of the Earth's crust. Geochemistry, 1041-1066 (1967), trans. from Geokhimiya 11, 1285–1309 (1967)

    Google Scholar 

  • Sharp, W. E.: The thermodynamic functions for carbon dioxide in the range 40 to 1000° C and 1 to 1400 bars. Univ. of Calif. Lawrence Rad. Lab. Publ. No. 7168-TID-4500, 52 pp. (1962)

  • Shaw, D. M.: The geochemistry of scapolite. Part I. Previous work and general mineralogy. J. Petrol. 1, 218–260 (1960a)

    Google Scholar 

  • Shaw, D. M.: The geochemistry of scapolite. Part II. Trace elements, petrology, and general geochemistry. J. Petrol. 1, 261–285 (1960b)

    Google Scholar 

  • Sobolev, V. S. (editor): The diamond deposits of Yakutia. Moscow, 527 pp. (1959)

  • Touret, J.: Le faciès granulite en Norvège meridionale. Pts. I and II. Lithos 4, 239–249, 423–436 (1971)

    Google Scholar 

  • Touret, J.: Facies granulite et fluids carboniques. Ann. Soc. Geol. Belg. (in press)

  • Verhoogen, J.: Les pipes de kimberlite du Katanga. Ann. Services Mines, Comité Special du Katanga 9, 3–46 (1938)

    Google Scholar 

  • Wenk, E.: Plagioklas als indexmineral in den zentralalpen. Schweiz. Mineral. Petrog. Mitt. 42, 139–152 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, R.C., Goldsmith, J.R. Stability of the scapolite meionite (3CaAl2Si2O2 · CaCO3) at high pressures and storage of CO2 in the deep crust. Contrib. Mineral. Petrol. 49, 49–62 (1975). https://doi.org/10.1007/BF00371078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371078

Keywords

Navigation