Skip to main content
Log in

Preferred orientation in experimentally deformed limestone

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Over sixty syntectonic deformation experiments in uniaxial compression have been done on fine-grained limestones in the stability fields of calcite I, calcite II and aragonite. X-ray techniques and spherical harmonic analysis of the data were used to determine preferred orientation quantitatively, and inverse pole-figures were derived for these axially symmetric specimens. They display in most cases strong preferred orientation which varies as a function of the experimental conditions, mainly temperature and pressure. At temperatures below 350° C recrystallization is lacking and flattened grains indicate that translation, twin gliding and kinking have been the dominant deformation mechanisms. The inverse pole-figure shows a maximum at c with a shoulder towards or a second maximum at e. This is in agreement with preferred orientation observed in experimentally deformed Yule marble and can be explained as the product of dominant twin gliding on e and translation gliding on r (Turner et al., 1956). At high temperatures (900–1000° C) strong grain growth (from 4 to 50 microns) indicates that the fabric recrystallized. Grains are equidimensional and clear with a marble-like texture. The inverse pole-figure shows a single maximum at r, and c-axes are oriented in a small circle around the axis of compression, σ 1. Such a pattern of preferred orientation would be expected on thermodynamic grounds assuming that recrystallized grains will be oriented in such a way that the strain energy is a maximum (e.g. MacDonald, 1960). Decrease in confining pressure caused a decrease of the maximum at c and the formation of a secondary maximum at highangle positive rhombs in the inverse pole-figure. This can be interpreted as r translation dominating over e twinning. In all deformation experiments an equilibrium in preferred orientation was reached after 20 percent shortening. The strength of preferred orientation decreased with increasing temperature. Aragonite was produced within its hydrostatic stability field at temperatures above 500° C. Close to the phase boundary, coarse-grained textures showed preferred orientation with poles to (010) parallel to σ 1. At higher pressures the fabric is fine-grained and [001] is aligned parallel to σ 1. Evidence is given that the phase change from calcite to aragonite in these deformation experiments is a diffusive and not a martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bain, G. W.: Geological, chemical and physical problems in the marble industry: American Institute of Mining and Metallurgical Engineers Technical Publication 1261, 11–12 (1940).

    Google Scholar 

  • Baker, D. W., Wenk, H. R., Christie, J. M.: X-ray analysis of preferred orientation in finegrained quartz aggregates. J. Geol. 77, 144–172 (1969).

    Google Scholar 

  • Barber, D. S., Wenk, H. R.: The microstructure of experimentally deformed limestones. J. Mat. Sc. (in press).

  • Boettcher, A. L., Wyllie, P. J.: The calcite-aragonite transition measured in the system CaO-H2O-CO2. J. Geol. 76, 314–335 (1968).

    Google Scholar 

  • Borg, I., Handin, J.: Torsion of calcite single crystals. J. Geophys. Res. 72, 641–669 (1967).

    Google Scholar 

  • Brace, W. F.: Orientation of anisotropic minerals in a stress field; discussion. Geol. Soc. Am. Mem. 79, 9–20 (1960).

    Google Scholar 

  • Bridgman, P. W.: The high pressure behavior of miscellaneous materials. Am. J. Sci. 237, 7–18 (1939).

    Google Scholar 

  • Burnes, J. H., Bredig, M. A.: Transformation of calcite to aragonite by grinding. J. Chem. Phys. 25, 1281 (1956).

    Google Scholar 

  • Calnan, E. A., Clews, C. J. B.: Deformation textures of face-centred cubic metals. Phil. Mag. 41, 1085–1100 (1950).

    Google Scholar 

  • Calnan, E. A., Clews, C. J. B.: The development of deformation textures in metals: Part II. Body-centred cubic metals. Phil. Mag. 42, 616–635 (1951a).

    Google Scholar 

  • Calnan, E. A., Clews, C. J. B.: The development of deformation textures in metals: Part III. Hexagonal structures. Phil. Mag. 42, 919–931 (1951b).

    Google Scholar 

  • Crawford, W. A., Fyfe, W. S.: Calcite-aragonite equilibrium at 100° C. Science 144, 1569–1570 (1964).

    Google Scholar 

  • Edmond, J. M., Paterson, M. S.: Strength of solid pressure media and implications for high pressure apparatus. Contr. Mineral, and Petrol. 30, 141–160 (1971).

    Google Scholar 

  • Goldsmith, J. R., Newton, R. C.: P-T-X relations in the system CaCO3-MgCO3 at high temperatures and pressures. Am. J. Sci. 267-A, 160–190 (1969).

    Google Scholar 

  • Green, H. W., Quartz: extreme preferred orientation produced by annealing. Science 157, 1444–1447 (1967).

    Google Scholar 

  • Green, H. W., Griggs, D. T., Christie, J. M.: Syntectonic and annealing recrystallization of fine-grained quartz aggregates. In: Experimental and Natural Rock Deformation, p. 272–335. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  • Griggs, D. T.: Deformation of single calcite crystals under high confining pressures. Am. Mineralogist, 23, 28–33 (1938).

    Google Scholar 

  • Griggs, D. T.: Hydrolytic weakening of quartz and other silicates. Geophys. J. Royal Astr. Soc. 14, 19–31 (1967).

    Google Scholar 

  • Griggs, D. T., Miller, F. B.: Deformation of Yule marble. Part I. Compression and extension of dry Yule marble at 10000 atmospheres confining pressure, room temperature. Geol. Soc. Am. Bull. 62, 853–862 (1951).

    Google Scholar 

  • Griggs, D. T., Turner, F. J., Borg, I., Sosoka, J.: Deformation of Yule marble. Part V: Effects at 300° C. Geol. Soc. Am. Bull. 64, 1327–1342 (1953).

    Google Scholar 

  • Griggs, D. T., Paterson, M. S., Heard, H. C., Turner, F. J.: Annealing recrystallization in calcite crystals and aggregates. Geol. Soc. Am. Mem. 79, 21–37 (1960a).

    Google Scholar 

  • Griggs, D. T., Turner, F. J., Heard, H.: Deformation of rocks at 500° to 800° C. Geol. Soc. Am. Mem. 79, 41–48 (1960b).

    Google Scholar 

  • Gross, K. A.: X-ray line broadening and stored energy in deformed and annealed calcite. Phil. Mag. 12, 801–813 (1965).

    Google Scholar 

  • Gross, K. A., Paterson, M. S.: Natural X-ray line broadening in limestones and marbles. Am. J. Sci. 263, 238–244 (1965).

    Google Scholar 

  • Handin, J. W., Griggs, D. T.: Deformation of Yule marble. Part II. Predicted fabric changes. Geol. Soc. Am. Bull. 62, 863–886 (1951).

    Google Scholar 

  • Handin, J., Higgs, D. V., Lewis, D. R., Weyl, P. K.: Effects of gamma radiation on the experimental deformation of calcite and certain rocks. Bull. Geol. Soc. Am. 68, 1203–1224 (1957).

    Google Scholar 

  • Heard, H. C.: Transition from brittle to ductile flow in Solnhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure. Geol. Soc. Am. Mem. 79, 193–226 (1960).

    Google Scholar 

  • Hearmon, R. F. S.: Elastic constants of anisotropic materials II. Advan. Phys. 5, 323–382 (1956).

    Google Scholar 

  • Higgs, D. V., Friedman, M., Gebhart, J. E.: Petrofabric analysis by means of the X-ray diffractometer. Geol. Soc. Am. Mem. 79, 275–292 (1960).

    Google Scholar 

  • Jamieson, J. C.: Introductory studies of high pressure polymorphism to 24000 bars by X-ray diffraction, with some comments on calcite-II: J. Geol. 65, 334–343 (1957).

    Google Scholar 

  • Jamieson, J. C., Goldsmith, J. R.: Some reactions produced in carbonates by grinding. Am. Mineralogist 45, 818–827 (1960).

    Google Scholar 

  • Johannes, W., Puhan, D.: The calcite-aragonite transition, reinvestigated. Contr. Mineral. and Petrol. 31, 28–38 (1971).

    Google Scholar 

  • Kamb, W. B.: Theory of preferred crystal orientation developed by crystallization under stress. J. Geol. 67, 153–170 (1959).

    Google Scholar 

  • Kamb, W. B.: The thermodynamic theory of nonhydrostatically stressed solids. J. Geophys. Res. 66, 259–271 (1961).

    Google Scholar 

  • Karl, F., Kern, H.: Über Beanspruchung und Verformung von Gesteinen II. Rotationssymmetrische und echt dreiachsige Verformungen an Marmoren. Contr. Mineral. and Petrol. 18, 199–224 (1968).

    Google Scholar 

  • Kern, H.: Dreiaxiale Verformungen an Solnhofener Kalkstein im Temperaturbereich von 20°-650° C. Röntgenographische Gefügeuntersuchungen mit dem Texturgoniometer. Contr. Mineral. and Petrol. 31, 39–66 (1971).

    Google Scholar 

  • Kern, H., Karl, F.: Über Beanspruchung und Verformung von Gesteinen. III. Synkristalline Verformung an Auerbach-Marmoren bei axial-symmetrischer und echt dreiachsig wirkender Beanspruchung. Contr. Mineral. and Petrol. 18, 225–240 (1968).

    Google Scholar 

  • Kocks, U. F.: The relation between polycrystal deformation and single-crystal deformation. Metallurgical Trans. 1, 1121–1143 (1970).

    Google Scholar 

  • Kumazawa, M.: A fundamental thermodynamic theory on non-hydrostatic field and on the stability of mineral orientation and phase equilibrium. J. Earth Sci., Nagoya University, 11, No. 2, 145–217 (1963).

    Google Scholar 

  • MacDonald, G. J. F.: Thermodynamics of solids under non-hydrostatic stress with geological applications. Am. J. Sci. 225, 266–281 (1957).

    Google Scholar 

  • MacDonald, G. J. F.: Experimental determination of calcite-aragonite equilibrium at elevated temperatures and pressures. Am. Mineralogist 41, 744–756 (1956).

    Google Scholar 

  • MacDonald, G. J. F.: Orientation of anisotropic minerals in a stress field. Geol. Soc. Am. Mem. 79, 1–8 (1960).

    Google Scholar 

  • McIntyre, D. B., Turner, F. J.: Petrofabric analysis of marbles from mid-Strathspey and Strathavon. Geol. Mag. 90, 225–240 (1953).

    Google Scholar 

  • Neumann, E. R.: Experimental recrystallization of dolomite and comparisons of preferred orientations of calcite and dolomite in deformed rocks. J. Geol. 77, 426–438 (1969).

    Google Scholar 

  • Newton, R. C., Goldsmith, J. R., Smith, J. V.: Aragonite crystallization from strained calcite at reduced pressures and its bearing on aragonite in low-grade metamorphism. Contr. Mineral. and Petrol. 22, 335–348 (1969).

    Google Scholar 

  • Paterson, M. S.: X-ray line broadening in plastically deformed calcite. Phil. Mag. 4, 451–466 (1959).

    Google Scholar 

  • Schmidt, E., Boas, W.: Crystal plasticity, p. 353. London: Hughes 1950.

    Google Scholar 

  • Sharma, K. N. M.: Structural analysis of the Piscatosin synform, Baskatong Reservoir (e) map area, Quebec; Ph. D. thesis, Queen's University, Kingston, Canada.

  • Shelley, D.: Hypothesis to explain the preferred orientations of quartz and calcite produced during syntectonic recrystallization. Geol. Soc. Am. Bull. 82, 1943–1954 (1971).

    Google Scholar 

  • Siemens, H.: Röntgenographische Bestimmung der Texturen von unverformten und experimentell verformten Solnhofener Kalkstein. Proc. of first Congress of the Intern. Soc. of Rock Mechanics (Lisbon, Portugal), 205–215 (1966).

  • Simmons, G., Bell, P.: Calcite-aragonite equilibrium. Science 139, 1197–1198 (1963).

    Google Scholar 

  • Trommsdorff, V.: Gefügestudien am Calcitmarmor aus Val Prato (Tessin). Schweiz. Mineral. Petrog. Mitt. 44, 595–611 (1964).

    Google Scholar 

  • Tullis, J.: Quartz: Preferred orientation in rocks produced by Dauphiné, twinning Science 168, 1342–1344 (1970).

    Google Scholar 

  • Turner, F. J.: Deformation twinning on (10¯11) and (01¯12) in experimentally deformed calcite. Tschermaks Mineral. Petrog. Mitt. 4, 28–33 (1954).

    Google Scholar 

  • Turner, F. J.: Rotation of the crystal lattice in kink bands, deformation bands, and twin lamellae of strained crystals. Proc. Nat. Acad. Sci. U. S. 48, 955–963 (1962).

    Google Scholar 

  • Turner, F. J., Ch'ih, C. S.: Deformation of Yule marble, Part III. Observed fabric changes due to deformation at 10000 atmospheres confining pressure, room temperature, dry. Geol. Soc. Am. Bull. 62, 887–906 (1951).

    Google Scholar 

  • Turner, F. J., Griggs, D. T., Heard, H. C.: Experimental deformation of calcite crystals. Geol. Soc. Am. Bull. 65, 883–934 (1954).

    Google Scholar 

  • Turner, F. J., Griggs, D. T., Clark, R. H., Dixon, R.: Deformation of Yule marble, Part VII. Development of oriented fabrics at 300° to 500° C. Geol. Soc. Am. Bull. 67, 1259–1294 (1956).

    Google Scholar 

  • Turner, F. J., Weiss, L. E.: Structural analysis of metamorphic tectonites. New York: McGraw-Hill 1963.

    Google Scholar 

  • Turner, F. J., Weiss, L. E.: Distribution of strain in deformed crystals and phyllite with special reference to kinking. Univ. of Calif. Publ. in Geol. Sci. 46, 83–101 (1965).

    Google Scholar 

  • Valkenburg, A. Van, Mao, H. K., Bell, P. M.: Ikaite (CaCO3-CH2O), a phase more stable than calcite and aragonite (CaCO3) at high water pressure. Carnegie Institution Year Book 70. Annual Rept. Geoph. Lab., 237–238 (1970–1971).

  • Wang, C. Y.: Velocity of compressional waves in limestones, marbles, and a single crystal of calcite to 20 kilobars. J. Geol. Res. 71, 3543–3547 (1966).

    Google Scholar 

  • Wenk, H. R.: Annealing of oligoclase at high pressures. Am. Mineralogist 54, 95–100 (1969).

    Google Scholar 

  • Wenk, H. R., Baker, D. W., Griggs, D. T.: X-ray fabric analysis of hot-worked and annealed flint. Science 167, 1447–1449 (1967).

    Google Scholar 

  • Wenk, H. R., Trommsdorff, V., Baker, D. W.: Inverse pole-figures of two carbonate fabrics. Schweiz. Mineral. Petrog. Mitt. 48, 467–470 (1968).

    Google Scholar 

  • Wenk, H. R., Wilde, W. R.: Orientation distribution diagrams for three Yule marble fabrics. (A. G. U. memoir) (in press, 1972).

  • Wonsiewicz, B. C., Chin, G. Y.: Inhomogeneity of plastic flow in constrained deformation. Metallurgical Trans. 1, 57–61 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publication No. 1043, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenk, H.R., Venkitasubramanyan, C.S., Baker, D.W. et al. Preferred orientation in experimentally deformed limestone. Contr. Mineral. and Petrol. 38, 81–114 (1973). https://doi.org/10.1007/BF00373875

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373875

Keywords

Navigation