Skip to main content
Log in

Amphibolitization of calc-silicate metasedimentary rocks

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Diopside granofels layers are associated with other metasedimentary rocks and gneisses near McMurdo Sound, Antarctica. Disrupted diopside granofels layers form tectonic inclusions which may have reaction rims of amphibolite. This amphibolite may either be a typical hornblende-plagioclase amphiholite or a hornblende-quartz amphibolite according to the initial composition of the diopside granofels. Chemical analyses of the reaction rims show that some of the amphibolites have major element compositions near tholeiitic basalt but that a sedimentary origin could be recognized for others that are high in silica. During amphibolitization, the diopside granofels loses Ca and gains Fe and Mg by mutual exchange of material with the surrounding rock over short distances. The metasomatic amphibolites fall on the “igneous differentiation trend” in a Niggli mg-c plot. At least small volumes of metasedimentary rock can attain the composition of basalt by amphibolitization in a metasomatic reaction rim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth, T. F. W.: Theoretical petrology, p. 191. New York: John Wiley & Sons 1962.

    Google Scholar 

  • Chinner, G. A.: Pelitic gneisses with varying ferrous-ferric ratios from Glen Cova, Angus, Scotland. J. Petrol. 1, 178–217 (1960).

    Google Scholar 

  • Deutsch, S., Webb, P. N.: Sr/Rb dating on basement rocks from Victoria Land: evidence for a 1000 million year old event. In: Antarctic geology, p. 557–563. New York: John Wiley& Sons 1965.

    Google Scholar 

  • Eckelmann, F. D., Poldervaart, A.: Geologic evolution of the Beartooth Mountains, Montana and Wyoming. Bull. Geol. Soc. Amer. 68, 1225–1262 (1957).

    Google Scholar 

  • Engel, A. E. J., Engel, C. G.: Progressive metamorphism of amphibolite. Northwest Adirondacks, New York. In: Petrologic studies, A volume to honor A. F. Buddington, p. 37–82. New York: Geol. Soc. Amer. 1962.

    Google Scholar 

  • Evans, B. W., Leake, B. E.: The composition and origin of the striped amphibolites of Connemara, Ireland. J. Petrol. 1, 337–363 (1960).

    Google Scholar 

  • Goldsmith, R.: Granofels, a new metamorphic rock name. J. Geol. 67, 109–110 (1959).

    Google Scholar 

  • Grindley, G. W., Warren, G.: Stratigraphic nomenclature and correlation in the western Ross Sea region. In: Antarctic geology, p. 314–333. New York: John Wiley & Sons 1965.

    Google Scholar 

  • Gunn, B. M.: Modal and element variation in Antarctic tholeiites. Geochim. Cosmochim. Acta 30, 881–920 (1966).

    Article  Google Scholar 

  • Heier, K. S.: The possible origins of amphibolites in an area of high metamorphic grade. Norsk Geol. Tidsskr. 42, 157–165 (1962).

    Google Scholar 

  • Jones, L. M., Faure, G.: Age of the basement complex of Wright Valley, Antarctica. Antarctic J. 4, 204–205 (1969).

    Google Scholar 

  • Leake, B. E.: The chemical distinction between ortho- and para-amphibolites. J. Petrol. 5, 238–254 (1964).

    Google Scholar 

  • Manson, V.: Geochemistry of basaltic rocks: major elements. In: Basalts, v. 1, p. 215–270. New York: Interscience 1967.

    Google Scholar 

  • Orville, P. M.: A model for metamorphic differntiation origin of thin-layered amphibolites. Am. J. Sci. 267, 64–86 (1969).

    Google Scholar 

  • Palmer, D. F., Bradley, J., Prebble, W. M.: Orbicular granodiorite from Taylor Valley, south Victoria Land, Antarctica. Bull Geol. Soc. Am. 78, 1423–1428 (1967).

    Google Scholar 

  • Pettijohn, F. J.: Chemical composition of sandstones-excluding carbonate and volcanic sands. U.S. Geol. Surv. Profess. Papers 440-S, p. S1-S18 (1963).

    Google Scholar 

  • Rivalenti, G., Sighinolfi, G. P.: Geochemical study of graywackes as a possible starting material of para-amphibolites. Contr. Mineral. and Petrol. 23, 173–188 (1969).

    Google Scholar 

  • Smithson, S. B., Fikkan, P. R., Murphy, D. J., Houston, R. S.: Development of augen gneiss in the ice-free valley area, South Victoria Land. In: Antarctic geology and geophysics, Oslo: Universitetsforlaget 1971.

    Google Scholar 

  • — —, Toogood, D. J.: Early geologic events in the ice-free valleys, Antarctica. Bull. Geol. Soc. Am. 81, 207–210 (1970).

    Google Scholar 

  • Vidale, R.: Metasomatism in a chemical gradient and the formation of calc-silicate bands. Am. J. Sci. 267, 857–874 (1969).

    Google Scholar 

  • Walker, K. R., Joplin, G. A., Lovering, J. F., Green, R.: Metamorphic and metasomatic convergence of basic igneous rocks and lime-magnesia sediments of the pre-cambrian of north-western Queensland. J. Geol. Soc. Australia 6, 149–177 (1960).

    Google Scholar 

  • Wegmann, E., Schaer, J. P.: Chronologie et déformations des filons basique dans les formations Précambriennes du Sud de la Norvege. Norsk Geol. Tidsskr. 42, 371–387 (1962).

    Google Scholar 

  • Williams, H., Turner, F. J., Gilbert, C. M.: Petrography, p. 243. San Francisco: W. H. Freeman 1958.

    Google Scholar 

  • Yoder, H. S., Jr.: Role of water in metamorphism. In: Crust of the earth. Geol. Soc. Amer. Spoe. Papers 62, 505–524 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smithson, S.B., Fikkan, P.R. & Houston, R.S. Amphibolitization of calc-silicate metasedimentary rocks. Contr. Mineral. and Petrol. 31, 228–237 (1971). https://doi.org/10.1007/BF00399652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399652

Keywords

Navigation