Skip to main content
Log in

Spurenelemente in Biotiten aus Graniten und Gneisen

Trace elements in biotites from granites and gneisses

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

91 biotites (53 from granites, 35 from highly metamorphic gneisses, 3 from redwitzites) were separated and analyzed for Fe, Mn, Zn, Cl, Sn, Ni, Co, Or, Cu, V, Mo, Pb. Biotites from gneisses contain much more Ni, Co, Cr, V but less Fe, Mn, Zn than those from granites. However, the distinction between biotites from gneisses and from granites on the basis of these elements is not certain. If a gneiss undergoes anatexis, the contents of Ni, Co, Cr, V, Zn and Sn of the preexistent biotite fractionate: Zn, Sn and Pe enter the anatectic melt readily while Ni, Co, Cr and V concentrate in the remaining matter (restite). Ni, Co, Cr and V are strongly positively correlated with one another but negatively with Fe and Zn, the latter being positively correlated with Pe. The chemical composition of biotites from granites depends not only on a potential degree of secondary decomposition into chlorite and muscovite but much more on the percentage of biotite in the rock: The more biotite, the higher the content of Ni, Co, Cr, V and the lower Fe, Zn and Sn in the biotite. Thus, it is possible to distinguish between normal and abnormal concentrations of an element in a biotite and in a rock. This might be useful in geochemical prospecting. Abnormal high concentrations of Sn and Zn were found in biotites from some granites which are connected with mineralizations of these elements. It is impossible hitherto to gain informations about the history and the parental material of a granitic magma from the minor elements in the rock or the biotite because their concentrations depend on how much biotite could be incorporated by the melt. The distribution coefficient of Cl between the lattice of 4 biotites and their fluid inclusions was determined to be 0,08.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Ahrens, L. H.: The use of ionization potentials. I. Ionic radii of the elements. Geochim. Cosmochim. Acta 3, 1–29 (1953).

    Google Scholar 

  • —, and S. R. Taylor: Spectrochemical analysis. London and Paris: Pergamon Press 1961.

    Google Scholar 

  • Barsukov, V. L.: Metallogenic specialization of granitoid intrusions. In: A. P. Vinogradov (editor), Chemistry of the earth's crust, vol. II. p. 211–230. Jerusalem 1967.

  • —, and N. A. Durasova: Metal content and metallogenetic specialization of intrusive rocks in the regions of sulfide-cassiterite deposits (Miao Chang and Sikhote-Alin'). Geochemistry Internat. 3, 1, 97–107 (1966).

    Google Scholar 

  • Behne, W.: Untersuchungen zur Geochemie des Chlor und Brom. Geochim. Cosmochim. Acta 3, 186–214 (1953).

    Google Scholar 

  • Borchert, H., u. J. Dybek: Zur Geochemie des Zinns. Chem. Erde 20, 137–154 (1959/60).

    Google Scholar 

  • Carr, M. H., and K. K. Turekian: The geochemistry of cobalt. Geochim. Cosmochim. Acta 23, 9–60 (1961).

    Google Scholar 

  • —: Chromium in granitic rocks. Geochim. Cosmochim. Acta 26, 411–415 (1962).

    Google Scholar 

  • Deer, W. A.: The composition and paragenesis of the biotites of the Carsphairn igneous complex. Mineral. Mag. 24, 495–502 (1937).

    Google Scholar 

  • —, R. A. Howie, and J. Zussman: Rock-forming minerals, vol. 3, Sheet silicates. London: Longmans 1961.

    Google Scholar 

  • Engel, A. E. J., and C. Engel: Progressive metamorphism and granitization of the major paragneiss, Northwest Adirondack Mountains, New York. Part. II: Mineralogy. Bull. Geol. Soc. Am. 71, 1–58 (1960).

    Google Scholar 

  • Eugster, H. P., and D. R. Wones: Phase relations of hydrous silicates with intermediate Mg/Fe ratios. Annual report of the Director of the Geophysical Laboratory, Carnegie Institution of Washington, 193–194 (1957–1958).

  • Fabich, K., u. W. Prodinger: Bericht über Arbeiten des chemischen Laboratoriums im Jahre 1961. Verhandl. Geol. Bundesanstalt Wien, H. 3 (Schlußheft) (1962), A92–A96.

  • Faul, H., and G. Davis: Mineral separation with asymmetric vibrators. Am. Mineralogist 44, 1076–1082 (1959).

    Google Scholar 

  • Fischer, G.: Über die modale Zusammensetzung der Eruptiva im ostbayerischen Kristallin. Geol. Bavarica 55, 7–33 (1965).

    Google Scholar 

  • —: Ein Beitrag zur stofflichen Verteilungsanalyse. Neues Jahrb. Mineral., Monatsh. 9–12, 269–283 (1964).

    Google Scholar 

  • Fuchs, G.: Zur Altersgliederung des Moldanubikums Österreichs. Verhandl. Geol. Bundesanstalt Wien, 96–117 (1962).

  • Goguel, R.: Die chemische Zusammensetzung der in den Mineralen einiger Granite und ihrer Pegmatite eingeschlossenen Gase und Flüssigkeiten. Geochim. Cosmochim. Acta 27, 2, 155–181 (1963).

    Google Scholar 

  • Grohmann, H.: Beitrag zur Geochemie österreichischer Granitoide. Tschermaks Mineral. Petrog. Mitt. 10, 1–4, 436–474 (1965).

    Google Scholar 

  • Gundlach, H., F. Karl u. G. Müller: Vergleichende geochemische Untersuchungen an ost- und südalpinen Graniten, Granodioriten und Tonaliten. Contr. Mineral. and Petrol. 16, 285–299 (1967).

    Google Scholar 

  • Haseloff, O. W., u. H. J. Hoffmann: Kleines Lehrbuch der Statistik. Berlin: Walter de Gruyter & Co. 1965.

    Google Scholar 

  • Heinrich, E. W.: Studies in the mica group: the biotite-phlogopite series. Am. J. Sci. 244, 836–844 (1946).

    Google Scholar 

  • Hellwege, H.: Zur Verteilung von Sn als Spurenelement in Mineralien. Hamburger Beitr. Angew. Mineral. Kristallphysik 1, 73–136 (1956).

    Google Scholar 

  • Herget, G.: Der Wörth-Falkensteiner Gneiszug und seine nähere Umgebung. Neues Jahrb. Mineral., Abh. 100, 3, 270–281 (1963).

    Google Scholar 

  • Hoenes, D., K.-R. Mehnert u. H. Schneiderhöhn: Führer zu petrographisch-geologischen Exkursionen im Schwarzwald und Kaiserstuhl. Stuttgart: Schweizerbart 1949.

    Google Scholar 

  • Horninger, G.: Der Schärdinger Granit. Tschermaks Mineral. Petrog. Mitt. 47, 26–79 (1936).

    Google Scholar 

  • Hunziker, J. C.: Zur Geologie und Geochemie des Gebietes zwischen Valle Antigorio (Provincia di Novara) und Valle di Campo (Kt. Tessin). Schweiz. Mineral. Petrog. Mitt. 46, 473–552 (1966).

    Google Scholar 

  • Köhler, A., u. A. Marchet: Die moldanubischen Gesteine des Waldviertels und seiner Randgebiete. Fortschr. Mineral. 25, 253–366 (1941).

    Google Scholar 

  • Kolbe, P., and S. R. Taylor: Geochemical investigation of the granitic rocks of the Snowy Mt. Area. J. Geol. Soc. Australia 12–13 (1965/66).

  • —: Major and trace element relationships in granodiorites and granites from Australia and South Africa. Contr. Mineral. and Petrol. 12, 202–222 (1966).

    Google Scholar 

  • Kraus, G.: Gefüge, Kristallgrößen und Genese des Kristallgranits I im Vorderen Bayerischen Wald. Neues Jahrb. Mineral., Abhandl. 97, 3, 357–434 (1962).

    Google Scholar 

  • Krauskopf, K. B.: Source rocks for metal bearing fluids. In: H. L. Barnes, Geochemistry of hydrothermal deposits, p. 1–28. New York: Holt, Rinehart & Winston, Inc. 1967.

    Google Scholar 

  • Kurat, G.: Der Weinsberger Granit im südlichen österreichischen Moldanubikum. Tschermaks Mineral. Petrog. Mitt. 9, 202–227 (1965).

    Google Scholar 

  • Kuroda, P. K., and E. B. Sandell: Geochemistry of molybdenum. Geochim. Cosmochim. Acta 6, 35–63 (1954).

    Google Scholar 

  • Larsen, E. S., in: F. Birch, J. F. Schairer, and H. C. Spicer, Handbook of physical constants. Geol. Soc. Am., Spec. Papers, No. 36 (1942).

  • Maroschek, E. F.: Beitrag zur Kenntnis des Granits von Mauthausen in Oberösterreich Tschermaks Mineral. Petrog. Mitt. 43, 375–405 (1933).

    Google Scholar 

  • Metz, R.: Der Granit von St. Blasien im Südschwarzwald und seine Randzonen. Jahresber. Mitt. Oberrhein. Geol. Ver., N. F. 46, 69–96 (1964).

    Google Scholar 

  • —, u. G. Rein: Erläuterungen zur geologisch-petrographischen Übersichtskarte des Südschwarzwaldes 1:50000. Lahr: Moritz Schauenburg 1958.

    Google Scholar 

  • Müller, G.: Die autometamorphe retrograde Umwandlung von Biotiten in Chlorite und Muskowite in sauren Tiefengesteinen. Contr. Mineral. and Petrol. 13, 295–365 (1966).

    Google Scholar 

  • Neumann, H.: Notes on the mineralogy and geochemistry of Zinc. Mineral. Mag. 28, 575–581 (1949).

    Google Scholar 

  • Newhouse, W. H.: Opaque oxides and sulphides in common igneous rocks. Bull. Geol. Soc. Am. 47, 1–52 (1936).

    Google Scholar 

  • Niemann, H.: Chemische Analysen und Dünnschliffausmessungen am Granit vom Wurmberg und Königskopf im Harz. Beitr. Mineral. Petrog. 6, 96–99 (1957/59).

    Google Scholar 

  • Nockolds, S. R.: The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, 401–420 (1947).

    Google Scholar 

  • Parry, W. T., and M. P. Nackowski: Copper, lead and zinc in biotites from basin and range quartz monzonites. Econ. Geol. 58, 1126–1144 (1963).

    Google Scholar 

  • Petrow, W. P., et al.: Einige Besonderheiten in der Verteilung von Beimengungselementen in Biotiten der Gneise des Ladoga-Gebietes. Vestn. Leningr. Univ. 1965, 24, 5–14. Zit. aus Zentr. Mineral., Teil II, H. 5/6, 702 (1967).

  • Platen, H. v.: Kristallisation granitischer Schmelzen. Beitr. Mineral. Petrog. 11, 334–381 (1965).

    Google Scholar 

  • Preuss, E., u. H. Ziehr: Zur Verbreitung des Quecksilbers in ostbayerischen Flußspatlagerstätten. Geol. Rundschau 55, 400–414 (1965).

    Google Scholar 

  • Putman, G. W., and C. W. Burnham: Trace elements in igneous rocks, Northwestern and Central Arizona. Geochim. Cosmochim. Acta 27, 53–106 (1963).

    Google Scholar 

  • Rabinovich, A. V., A. N. Muravera, and M. V. Zhdanova: Molybdenum content of certain rocks and minerals in the intrusives of Eastern Transbaikal. Geochemistry 2, 155–162 (1958).

    Google Scholar 

  • Ramdohr, P.: Die Erzmineralien in gewöhnlichen magmatischen Gesteinen. Abhandl. Preuß. Akad. Wiss., Math.-Naturw. Kl., Nr. 2 (1940).

  • Richter, W.: Petrologische Untersuchungen am Mauthausener Granit im österreichischen Moldanubikum. Tschermaks Mineral. Petrog. Mitt. 10, 3, 265–296 (1965).

    Google Scholar 

  • Rimšaite, J. H. Y.: Studies of rock-formung micas. Geol. Surv. Canada Bull. 149 (1964).

  • Saidel, A. N., W. K. Prokofjew u. S. M. Raiski: Spektraltabellen. Berlin: VEB Verlag Technik 1955.

    Google Scholar 

  • Scharbeet, S.: Mineralbestand und Genesis des Bisgarner Granits im niederösterreichischen Waldviertel. Tschermaks Mineral. Petrog. Mitt. 11, 388–412 (1966).

    Google Scholar 

  • Schroll, E.: Zur Geochemie der seltenen Elemente in granitoiden Gesteinen. Tschermaks Mineral. Petrog. Mitt., III. F., 11, 317–347 (1966).

    Google Scholar 

  • Sen, N., S. R. Nockolds, and R. Allen: Trace elements in minerals from rooks of the S. Californian batholith. Geochim. Cosmochim. Acta 16, 58 (1959).

    Google Scholar 

  • Serykh, V. I.: Geochemistry, of nickel in granitoids. Geochemistry 1964, 880–888.

  • Stettner, G.: Über die geologische Entwicklung des Fichtelgebirges. Aufschluß 11, Nr. 5/6, 97–110 (1960).

    Google Scholar 

  • Strunz, H.: Mineralien und Lagerstätten in Ostbayern. Regensburg: Gustav Bosse 1953.

    Google Scholar 

  • —: Oberpfälzische Granite und ihre Zusammensetzung. Acta Albertina Ratisbonensia 21, 63 (1953/55).

    Google Scholar 

  • —: Die Kluft- und Drusenmineralien der Fichtelgebirgsgranite. Aufschluss 11, 9, 233–252 (1960).

    Google Scholar 

  • Tauson, L. V.: Geochemistry of rare elements in igeneous rocks and metallogenio specialization of magmas. In: A. P. Vinogradov, Chemistry of the earth's crust, vol. II, p. 248–259. Jerusalem 1967.

  • Taylor, S. R.: Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28, 1273–1285 (1964).

    Google Scholar 

  • Thiele, O.: Neue geologische Ergebnisse aus dem Sauwald (O.-Ö.). Verhandl. Geol. Bundesanstalt Wien 117–129 (1962).

  • Tobschall, H. J.: Ein Beitrag zur Migmatitgenese auf Grund chemischer Analysen von Glimmerschiefern, Gneisen und Migmatiten der Mittleren Cévennen (Dép. Ardèche). Diplomarbeit, Göttingen 1966.

  • Troll, G.: Das Intrusivgebiet von Fürstenstein. Geol. Bavarica 52, 140 (1964).

    Google Scholar 

  • Turekian, K. K., and K. H. Wedepohl: Distribution of the elements in some major units of the earth's crust. Bull. Geol. Soc. Am. 72, 175–192 (1961).

    Google Scholar 

  • Vinoghadov, A. P.: Average contents of chemical elements in the principal types of igneous rocks of the earth's crust. Geokhimiya 1962 (7), 641–644.

  • Wager, L. R., and R. L. Mitchell: The distribution of trace elements during strong fractionation of basic magma — a further study of the Skaergaard intrusion, East Greenland. Geochim. Cosmochim. Acta 1, 129–208 (1951).

    Google Scholar 

  • Wedepohl, K. H.: Untersuchungen zur Geochemie des Zinks. Geochim. Cosmochim. Acta 3, 93 (1953).

    Google Scholar 

  • —: Untersuchungen zur Geochemie des Bleis. Geochim. Cosmochim. Acta 10, 69–148 (1961).

    Google Scholar 

  • —: Geochemie. Sammlung Göschen, Bd. 1224/1224a, 1224b. Berlin: Walter de Gruyter & Co. 1967a.

    Google Scholar 

  • —: Geochemie. In: R. Brinkmann, Lehrbuch der allgemeinen Geologie, Bd. III, Stuttgart: Ferdinand Enke 1967b.

    Google Scholar 

  • —: Chemical fractionation in the sedimentary environment. In: L. H. Ahrens, Origin and distribution of the elements. London: Pergamon Press 1968.

    Google Scholar 

  • Winkler, H. G. F.: Der Prozeß der Anatexis: Seine Bedeutung für die Genese der Migmatite. Tschermaks Mineral. Petrog. Mitt. 11, 266–287 (1966).

    Google Scholar 

  • —: Die Genese der metamorphen Gesteine, 2. Aufl. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Young, R. S.: The geochemistry of cobalt. Geochim. Cosmochim. Acta 13, 1, 28 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haack, U.K. Spurenelemente in Biotiten aus Graniten und Gneisen. Contr. Mineral. and Petrol. 22, 83–126 (1969). https://doi.org/10.1007/BF00372399

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00372399

Navigation