Skip to main content
Log in

The A and B mica layers and the crystal structure of sheet silicates

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A discussion of the transition from the “ideal hexagonal” mica structure to the “ideal ditrigonal” one, leads to the conclusion that the single mica layer may have two different structures (labelled A and B). The recent literature data show that both the A and B structures have been detected in some triocahedral layer lattice silicates found in nature. An examination of the structural stability of the A and B structures suggests that the last one may not be realized by dioctahedral layer lattice silicates. The concept of two structurally different mica layers, which however have the same lattice constants, greatly improves the understanding of polymorphism and twin laws in layer lattice silicates.

The structural features of the tetrahedral sheet, octahedral sheet and interlayer region are carefully examined. Thus we can reach the following conclusions: the tetrahedal sheet is not entirely free to reduce its lateral dimensions by the mechanism of tetrahedal rotation owing to the repulsion among Obas atoms; the octahedral sheet in layer lattice silicates, may increase or reduce its lateral dimensions as compared to the lateral dimensions it has in the hydroxide minerals; the interlayer region is characterized by a regular octahedral coordination of the Obas around the interlayer cation. On the ground of these conclusions, new structural models for some selected layer lattice silicates are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Obas :

basal oxygen atoms of the (Al, Si)O4 tetrahedra

Oap :

apical oxygen atoms of the (Al, Si)O4 tetrahedra

b tetr :

b dimension which the tetrahedral sheet would assume if unconstrained

b oct :

b dimension which the octahedral sheet has in the hydroxide minerals

b obs :

observed value of b

c *oct :

thickness of the octahedral sheet

d o :

distance between an octahedral cation and an Oap atom

d int :

distance between an interlayer cation and an Obas atom

α:

average tetrahedral rotation from ideal hexagonal symmetry

References

  • Bailey, S. W.: The status of clay mineral structures. Clays and clay minerals. Proc. 14th Conf., p. 1–23. London: Pergamon Press 1966.

    Google Scholar 

  • —, and B. E. Brown: Chlorite polytypism: I. Regular and semi-random one-layer structures. Am. Mineralogist 47, 819–850 (1962).

    Google Scholar 

  • Barberi, F., e F. Innocenti: Le rocce selagitiche di Orciatico e Montecatini in Val di Cecina. Atti Soc. Toscana Sci. Nat., Mem., Ser. A 74, 139–178 (1967).

    Google Scholar 

  • Brown, B. E., and S. W. Bailey: Chlorite polytypism: II. Crystal structure of a one-layer Cr-chlorite. Am. Mineralogist 48, 42–61 (1963).

    Google Scholar 

  • Burnham, C. W., and E. W. Radoslovich: Crystal structures of coexisting muscovite and paragonite. Carnegie Inst. Wash. Year Book 63, 232–236 (1964).

    Google Scholar 

  • Deer, W. A., R. A. Howie, and J. Zussmann: Rock-forming minerals, vol. 3, Sheet silicates. Second impression, London: Longmans 1963.

    Google Scholar 

  • Donnay, G., J. D. H. Donnay, and H. Takeda: Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst. 17, 1374–1381 (1964).

    Google Scholar 

  • —, N. Morimoto, H. Takeda, and J. D. H. Donnay: Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst. 17, 1369–1373 (1964).

    Google Scholar 

  • Eggleston, R. A., and S. W. Bailey: Structural aspects of dioctahedral chlorite. Am. Mineralogist 52, 673–689 (1967).

    Google Scholar 

  • Franzini, M.: Nuovi dati sulla struttura delle miche triottaedriche. Atti Soc. Toscana Sci. Nat., Mem., Ser. A 73, 620–631 (1966).

    Google Scholar 

  • —, R. Mazzuoli e L. Schiaffino: Flogopite e pennina in associazione parallela polisintetica (Miniera del Ginevro, Isola d'Elba). Atti Soc. Toscana Sci. Nat., Mem., Ser. A 73, 531–552 (1967).

    Google Scholar 

  • —, e L. Schiaffino: On the crystal structure of biotites. Z. Krist. 119, 297–309 (1963a).

    Google Scholar 

  • —: Polimorfismo e leggi di geminazione delle biotiti. Atti Soc. Toscana Sci. Nat., Mem., Ser. A 70, 60–98 (1963b).

    Google Scholar 

  • Gatineau, L.: Localisation des remplacements isomorphiques dans la muscovite. Compt. Rend. 256, 4648–4649 (1963).

    Google Scholar 

  • Guven, N.: The crystal structure of 2M1 phengite and 2M1 muscovite. Carnegie Inst. Wash. Year Book 66, 487–492 (1967).

    Google Scholar 

  • —, and C. W. Burnham: The crystal structure of 3T muscovite. Z. Krist. 125, 163–183 (1967).

    Google Scholar 

  • Hendricks, S. B., and M. Jefferson: Polymorphism of the micas, with optical measurements. Am. Mineralogist 24, 729–771 (1939).

    Google Scholar 

  • Isetti, G.: Ricerche sulla struttura della brucite. Periodico Mineral. (Rome) 34, 327–335 (1965).

    Google Scholar 

  • Jackson, W. W., and J. West: The structure of muscovite. Z. Krist. 76, 211–227 (1930).

    Google Scholar 

  • Jahanbagloo, C. I., and T. Zoltai: The crystal structure of a hexagonal Al-serpentine. Am. Mineralogist 53, 14–24 (1968).

    Google Scholar 

  • Jørgensen, P.: Infrared absorption of O-H bonds in some micas and other phyllosilicates. Proc. 13th Nat. Conf. on Clays and Clay minerals, p. 263–273. London: Pergamon Press 1964.

    Google Scholar 

  • Levinson, A. A.: Studies in the mica group; relationship between polymorphism and composition in the muscovite-lepidolite series. Am. Mineralogist 38, 88–107 (1953).

    Google Scholar 

  • Megaw, H. D.: The crystal structure of hydrargillite, Al(OH)3. Z. Krist. 87, 185–204 (1934).

    Google Scholar 

  • Natta, G., e E. Casazza: Struttura cristallina ed atomica dell'idrato ferroso. Rend. Accad. Nazl. Lincei, Ser. VI, 5, 803–807 (1927).

    Google Scholar 

  • Povarennykh, A. S.: Some fundamental problems of crystal chemistry in relation to mineralogy. International series of monographs on earth sciences, vol. 18, p. 135–169. London: Pergamon Press 1964.

    Google Scholar 

  • Radoslovich, E. W.: Structural control of polymorphism in micas. Nature 183, 253 (1959).

    Google Scholar 

  • —: The structure of muscovite, KAl2(Si3Al)O10(OH)2. Acta Cryst. 13, 919–932 (1960).

    Google Scholar 

  • —: Surface symmetry and cell dimensions of layer-lattice silicates. Nature 191, 67–68 (1961).

    Google Scholar 

  • —: The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations. Am. Mineralogist 47, 617–636 (1962).

    Google Scholar 

  • —, and K. Norrish: The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. Am. Mineralogist 47, 599–616 (1962).

    Google Scholar 

  • Ross, M., H. Takeda, and D. R. Wones: Mica polytypes: sistematic description and identification. Science 151, 191–193 (1966).

    Google Scholar 

  • Shirozu, H., and S. W. Bailey: Chlorite polytypism: III. Crystal structure of an orthohexagonal iron chlorite. Am. Mineralogist 50, 868–885 (1965).

    Google Scholar 

  • Smith, J. V., and S. W. Bailey: Second review of Al-O and Si-O tetrahedral distances. Acta Cryst. 16, 801–811 (1963).

    Google Scholar 

  • —, and H. S. Yoder: Experimental and theoretical studies of the mica polymorphs. Mineral. Mag. 31, 209–235 (1956).

    Google Scholar 

  • Steinfink, H.: Crystal structure of a trioctahedral mica: phlogopite. Am. Mineralogist 47, 886–896 (1962).

    Google Scholar 

  • Takeda, H.: Determination of the layer stacking sequence of a new complex mica polytype: a 4-layer lithium fluorophlogopite. Acta Cryst. 22, 845–853 (1967).

    Google Scholar 

  • —, and J. D. H. Donnay: Trioctahedral one-layer micas. III. Crystal structure of a synthetic lithium fluormica. Acta Cryst. 20, 638–646 (1966).

    Google Scholar 

  • Takeuchi, Y.: Structures of brittle micas. Proc. 13th Nat. Conf. on Clays and Clay minerals, p. 1–24. London: Pergamon Press 1966.

    Google Scholar 

  • Vedder, W., and R. S. McDonald: Vibrations of the OH ions in muscovite. J. Chem. Phys. 38, 1583–1590 (1963).

    Google Scholar 

  • Wones, D. R.: Physical properties of synthetic biotites on the join phlogopite — annite. Am. Mineralogist 48, 1300–1321 (1963).

    Google Scholar 

  • Zvyagin, B. B.: A theory of polymorphism of micas. Soviet Phys. Cryst. 6, 571–580 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzini, M. The A and B mica layers and the crystal structure of sheet silicates. Contr. Mineral. and Petrol. 21, 203–224 (1969). https://doi.org/10.1007/BF00371751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371751

Keywords

Navigation