Skip to main content
Log in

Shock induced planar deformation structures in quartz from the Ries crater, Germany

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1969

Abstract

Crystalline rocks from breccias of the Ries basin, Germany, contain highly deformed quartz. Various planar deformation structures could be observed and classified into five different types: (1) Decorated planar elements, (2) Non-decorated planar elements, (3) Homogeneous lamellae, (4) Filled lamellae, (5) Planar fractures. All these structures are parallel to crystallographic planes: {10¯13}, {10¯12}, {10¯11}, {0001},{11¯21}, {11¯22}, {21¯31}, {51¯61}, {10¯10}. The most typical and most abundant planar structures are decorated and nondecorated planar elements parallel to {10¯13} and {10¯12}. Planar fractures are parallel to {0001} and {10¯11} and form at lower stress levels, probably earlier than the planar elements.

Quartz containing planar elements, especially of the non-decorated type, has lower density, index of refraction and birefringence than normal quartz. This “quartz” is apparently a mixture of an amorphous phase and crystalline quartz, the amount of which can be calculated using average density or refractive index.

Comparison of planar quartz structures found in tectonites and those produced artificially under static or dynamic high pressure conditions demonstrates that Ries quartz closely resembles deformed quartz recovered from shock wave experiments. The planar structures found in Ries quartz have been formed by shock wave actions with peak pressures in the 100–400 kbar range.

Planar elements are explained to be traces of gliding processes during shock loading visible due to the fact that a high pressure phase (stishovite and/or a stishovite-like glass phase) has been produced along the glide planes. Upon pressure release most of the high pressure phase was transformed into an SiO2-glass (diaplectic glass).

In comparison with experimental data the amount of residual crystalline quartz as well as type and orientation of planar structures in the quartz grains are clues to estimate the peak pressures responsible for these deformations. Shock waves with peak pressures exceeding about 400 kbar completely transform quartz into diaplectic SiO2-glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, T. J., and J. T. Rosenberg: Shock metamorphism: experiments on quartz and plagioclase. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Böhm, A.: Über die Gesteine des Wechsels. Mineral. Petrogr. Mitt. 5, 197–214 (1883).

    Google Scholar 

  • Bridgeman, P. W.: The compression of 39 substances to 100000 kg/cm2. Proc. Am. Acad. Arts Sci. 76, 55–70 (1948).

    Google Scholar 

  • Bunch, T. E., and A. J. Cohen: Shock deformation of quartz from two meteorite craters. Bull. Geol. Soc. Am. 75, 1263–1266 (1964).

    Google Scholar 

  • Carter, N. L.: Basal quartz deformation lamellae, a criterion for recognition of impactites. Am. J. Sci. 263, 786–806 (1965).

    Google Scholar 

  • , J. M. Christie, and D. T. Griggs: Experimental deformation and recrystallization of quartz. J. Geol. 72, 687–733 (1964).

    Google Scholar 

  • - Dynamic deformation of quartz. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • , and M. Friedman: Dynamic analysis of deformed quartz and calcite from the Dry Creek Ridge anticline, Montana. Am. J. Sci. 263, 747–785 (1965).

    Google Scholar 

  • Chao, E. T. C.: Shock effects in cartain rock forming minerals. Science 156, 192–202 (1967).

    Google Scholar 

  • : Pressure and temperature histories of impact metamorphosed rocks — Based on petrographic observations. Neues Jahrb. Mineral., Abhandl. 108, 209–246 (1968).

    Google Scholar 

  • - Some aspects of progressive impact metamorphism. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Christie, J. M., and H. W. Green: Several new slip mechanisms in quartz. Trans. Am. Geophys. Union 45, 103 (1964).

    Google Scholar 

  • , D. T. Griggs, and N. L. Carter: Experimental evidence of basal slip in quartz. J. Geol. 72, 734–756 (1964).

    Google Scholar 

  • , H. C. Heard, and P. N. La Mori: Experimental deformation of quartz single crystals at 27 to 30 kilobars confining pressure and 24° C. Am. J. Sci. 262, 26–55 (1964).

    Google Scholar 

  • , and C. B. Raleigh: The origin of deformation lamellae in quartz. Am. J. Sci. 257, 385–407 (1959).

    Google Scholar 

  • De, A.: Observations on the deformation lamellae in quartz of four Indian tectonites (abs.). Trans. Am. Geophys. Union 39, 512 (1958).

    Google Scholar 

  • Dence, M. R.: A comparative structural and petrographic study of probable Canadian meteorite craters. Meteoritics 2, 249–270 (1964).

    Google Scholar 

  • : The extraterrestrial origin of Canadian craters. Annals N.Y. Acad. Sci. 123, 941–989 (1965).

    Google Scholar 

  • Engelhardt, W. v.: Neue Beobachtungen im Nördlinger Ries. Geol. Rundschau 57, 165–188 (1967).

    Google Scholar 

  • , J. Arndt, D. Stöffler, W. F. Müller, H. Jeziorkowski u. R. A. Gubser: Diaplektische Gläser in den Breccien des Ries von Nördlingen als Anzeichen von Stoßwellenmetamorphose. Contr. Mineral. and Petrol. 15, 93–102 (1967).

    Google Scholar 

  • , W. Bertsch, D. Stöffler, P. Groschopf u. W. Reiff: Anzeichen für den meteoritischen Ursprung des Beckens von Steinheim. Naturwissenschaften 54, 198–199 (1967).

    Google Scholar 

  • F. Hörz, D. Stöffler, and W. Bertsch: Observations of quartz deformation in breccias of Clearwater Lake (Canada) and the Ries Basin (Germany). Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • , and D. Stöffler: Spaltflächen in Quarz als Anzeichen für Einschläge großer Meteoriten. Naturwissenschaften 52, 489 (1965).

    Google Scholar 

  • -,- Stages of shock metamorphism in crystalline rocks of the Ries basin (Germany). Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Fairbairn, H. W.: Deformation lamellae in quartz from the Ajibik formation, Michigan. Bull. Geol. Soc. Am. 52, 1265–1278 (1941).

    Google Scholar 

  • Fischer, G.: Mechanisch bedingte Streifungen an Quarz. Zentr. Mineral., Geol., Paläontol. A 1925, 210–213.

  • French, B. M.: Sudbury structure, Ontario: Some petrographic evidence for an origin by Meteoritic Impact. Science 156, 1094–1098 (1967).

    Google Scholar 

  • Fryer, C. C.: Shock deformation of quartz sand. Int. J. Rock Mechanics and Mining Sci. 3, 81–88 (1966).

    Google Scholar 

  • Hansen, E., and I. Y. Borg: The dynamic significance of deformation lamellae in quartz of a calcite cemented sandstone. Am. J. Sci. 260, 321–336 (1962).

    Google Scholar 

  • Hietanen, A.: On the petrology of the Finnish quartzites. Bull. comm. géol. Finlande Nr. 122, 1–118 (1938).

    Google Scholar 

  • Hörz, F.: Statistical measurements of deformation structures and refractive indices in experimentally shock loaded quartz. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Ingebson, E., and O. F. Tuttle: Relations of lamellae and crystallography of quartz and fabric directions in some deformed rocks. Trans. Am. Geophys. Union 26, 95–105 (1945).

    Google Scholar 

  • McIntyre, D. B.: Impact metamorphism at Clearwater Lakes, Quebec (Abstract). J. Geophys. Research 67, 1647 (1962).

    Google Scholar 

  • McLaren, A. C., J. A. Retchford, D. T. Griggs, and J. M. Christie: Transmission electron microscope study of brazil twins and dislocations experimentally produced in natural quartz. Phys. Stat. Sol. 19, 631–644 (1967).

    Google Scholar 

  • McQueen, R. G., J. N. Fritz, and S. P. Marsh: On the equation of state of stishovite. J. Geophys. Research 68, 2319–2322 (1963).

    Google Scholar 

  • Milton, D. J., J. Littler, J. J. Fahey, and E. M. Shoemaker: Petrography of glassy ejecta from scooter 0,5-kiloton high explosive cratering experiment, Nevada. Astrogeol. Studies Progr. Rept. U.S. Geol. Surv. 88–92 (1961).

  • Müller, W. F., and M. Defourneaux: Deformationsstrukturen in Quarz als Indikator für Stoßwellen: eine experimentelle Untersuchung an Quarzeinkristallen. Z. Geophysik 34, 483–504 (1968).

    Google Scholar 

  • -, and U. Hornemann: Experimentelle Untersuchungen zur Wirkung von Stoßwellen auf Quarz und Feldspäte. 45. Jahrestag. der Dtsch. Mineralog. Ges., Berlin, 9. 10. 1967.

  • - - Personal communication 1968.

  • Naha, K.: Time of formation and kinematic significance of deformation lamellae in quartz. J. Geol. 67, 120–124 (1959).

    Google Scholar 

  • Preuss, E.: Das Ries und die Meteoritentheorie. Fortschr. Mineral. 41, 271–312 (1964).

    Google Scholar 

  • Rinehart, J. S.: Intense destructive stresses resulting from stress wave interactions. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Robertson, P. B., M. R. Dence, and M. A. Vos: Deformation in rockforming minerals from Canadian craters. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Saha, A. K.: Deformation lamellae in quartz from granophyric granite and diorite of ButgoraSarjori area, eastern Singhbhum (abs.): Indian Sci. Congr. 42 nd, Calcutta, Proc. part 3, 184 (1955).

  • Sander, B.: Gefügekunde der Gesteine. Wien 1930.

  • Scott, W. H., E. Hansen, and R. J. Twiss: Stress analysis of quartz deformation lamellae in a minor fold. Am. J. Sci. 263, 729–746 (1965).

    Google Scholar 

  • Short, N. M.: (a) Effect of shock pressures from a nuclear explosion on mechanical and — optical properties of granodiorites. J. Geophys. Research 71, 1195–1215 (1966).

    Google Scholar 

  • (b) Nuclear explosion induced microdeformation of rocks: an aid to the recognition of — meteorite impact structures. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • (c) Experimental microdeformation of rock materials by shock pressures from laboratoryscale impacts and explosions. Conference on shock metamorphism of natural materials, Greenbelt (April 14–16, 1966). In press 1968.

  • Stöffler, D.: Zones of impact metamorphism in the crystalline rocks of the Nördlinger Ries Crater. Contr. Mineral. and Petrol. 12, 15–24 (1966).

    Google Scholar 

  • : Deformation und Umwandlung von Plagioklas durch Stoßwellen in den Gesteinen des Nördlinger Ries. Contr. Mineral. and Petrol. 16, 51–83 (1967).

    Google Scholar 

  • -, and J. Arndt: Coesit und Stishovit, die Höchstdruckmodifikationen des Siliciumdioxids. Naturwissenschaften (1969) (im Druck).

  • Wackerle, J.: Shock compression of quartz. J. Appl. Phys. 33, 922–937 (1962).

    Google Scholar 

  • Zirkel, F.: Lehrbuch der Petrographie, 2. Aufl., S. 196. Leipzig 1893.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02672809.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, W.v., Bertsch, W. Shock induced planar deformation structures in quartz from the Ries crater, Germany. Contr. Mineral. and Petrol. 20, 203–234 (1969). https://doi.org/10.1007/BF00377477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00377477

Keywords

Navigation