Skip to main content
Log in

Basalts from Madeira: A petrochemical contribution to the genesis of oceanic alkali rock series

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Petrological and geochemical investigations have been conducted on the little studied Neogene basaltic rocks of the Madeiran Islands. The Madeiran suite of minor intrusives and lavas consists of parental, unusually soda rich, alkali olivine basalts with hawaiite, mugearite and essexite derivatives. Olivine and clinopyroxene are dominant phenocryst and cumulus nodule phases. Low pressure fractionation of the parental magma by precipitation of these minerals gave rise to the hawaiitic trend. That olivine settling precedes clinopyroxene in the fractionation process can be deduced from Ca and Ni variations in the analysed rocks and phenocryst separates. Late stage feldspar flotation in a hawaiitic derivative liquid led to extrusive mugearites and an intrusive essexite.

Low K/Rb ratios in the Madeiran basalts (ave. 325) point to the influence of phlogopite rather than hornblende in the mantle melting zone. The primitive alkali olivine basalt magma is thought to have arisen by partial melting following water release from small amounts of phlogopite (no more than 1%) at mantle depths around 100 km. A deep level of magma generation is consistent with the low values of heat flow recorded in ocean basins. Many other oceanic alkali basalt provinces remote from ridge systems may have arisen in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottinga, Y., Weill, D. F.: Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am. J. Sci. 269, 169–182 (1970).

    Google Scholar 

  • Brown, G. M., Peckett, A.: Selective volatilization on the lunar surface: Evidence from Apollo 14 feldsparphyric basalts. Nature 234, 262–266 (1971).

    Google Scholar 

  • Clark, S. P., Ringwood, A. E.: Density distribution and constitution of the mantle. Rev. Geophys. 2, 35–88 (1964).

    Google Scholar 

  • Deer, W. A., Howie, R. A., Zussman, J.: Rock forming minerals, vol. 2. Chain silicates. London: Longmans, Green and Co. Ltd. 1963.

    Google Scholar 

  • De Morais, J. C.: Os Arquipelagos da Madeira e Selvagens. Proc. Geol. Soc. Portugal 7, 1–32 (1948).

    Google Scholar 

  • Finckh, L.: Die Gesteine der Inseln Madeira und Porto Santo. Z. Deut. Geol. Ges. 65, 453–517 (1913).

    Google Scholar 

  • Flower, M. F. J.: Phlogopite from Jan Mayen Island, North Atlantic. Earth Planet. Sci. Lett. 6, 461–466 (1969).

    Google Scholar 

  • Flower, M. F. J.: Evidence for the role of phlogopite in the genesis of alkali basalts. Contr. Mineral. and Petrol. 32, 126–137 (1971).

    Google Scholar 

  • Fyfe, W. S.: Lattice energies, phase transformations and volatiles in the mantle. Phys. Earth Planet. Interiors 3, 196–200 (1970).

    Google Scholar 

  • Fyfe, W. S., Brown, G. C.: Granites past and present. J. Earth Sci. (Leeds) 8, pt. 2 (in press).

  • Gagel, C.: Studien über den Aufbau und die Gesteine Madeiras I. Z. Deut. Geol. Ges. 64, 344–391 (1912).

    Google Scholar 

  • Gagel, C.: Studien über den Aufbau und die Gesteine Madeiras II. Z. Deut. Geol. Ges. 66, 449–481 (1914).

    Google Scholar 

  • Green, D. H.: A review of experimental evidence on the origin of basaltic and nephelinitic magmas. Phys. Earth Planet. Interiors 3, 221–235 (1970).

    Google Scholar 

  • Green, D. H., Ringwood, A. E.: The genesis of basaltic magmas. Contr. Mineral. and Petrol. 15, 103–190 (1967).

    Google Scholar 

  • Griffin, W. L., Murthy, V. R.: Distribution of K, Rb, Sr and Ba in some minerals relevant to basalt genesis. Geochim. Cosmochim. Acta 33, 1389–1414 (1969).

    Google Scholar 

  • Hartung, G.: Geologische Beschreibung der Inseln Madeira und Porto Santo. Leipzig: Engelmann 1864.

    Google Scholar 

  • Jakeš, P., White, A. J. R.: K/Rb ratios of rocks from island arcs. Geochim. Cosmochim. Acta 34, 849–856 (1970).

    Google Scholar 

  • Krejci-Graf, K.: Vertikal-Bewegungen der Makaronesen: Madeira-Archipel. Geol. Rundsch. 51, 94–105 (1961).

    Google Scholar 

  • Krejci-Graf, K.: Die Mittelatlantischen Vulkaninseln: Madeira-Archipel. Mitt. Geol. Ges. Wien 57, 419–427 (1964).

    Google Scholar 

  • Kushiro, I., Syono, Y., Akimoto, S.: Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res. 73, 6023–6029 (1968).

    Google Scholar 

  • Lambert, I. B., Wyllie, P. J.: Stability of hornblende and a model for the low velocity zone. Nature 219, 1240–1241 (1968).

    Google Scholar 

  • Lambert, I. B., Wyllie, P. J.: Low velocity zone of the Earth's mantle: Incipient melting caused by water. Science 169, 764–766 (1970).

    Google Scholar 

  • Macdonald, G. A.: Composition and origin of Hawaiian lavas. Geol. Soc. Am. Mem. 116, 477–522 (1968).

    Google Scholar 

  • McBirney, A. R., Gass, I. G.: Relations of oceanic volcanic rocks to mid-ocean rises and heat flow. Earth Planet. Sci. Letters 2, 265–276 (1967).

    Google Scholar 

  • Muir, I. D., Tilley, C. E.: Mugearites and their place in alkali igneous rock series. J. Geol. 69, 186–203 (1961).

    Google Scholar 

  • O'Hara, M. J.: The bearing of phase equilibria studies in synthetic and natural systems on the origin of basic and ultrabasic rocks. Earth Sci. Rev. 4, 69–133 (1968).

    Google Scholar 

  • Rucklidge, J. C., Gasparrini, E. L.: Electron microprobe analytical data reduction EMPADR V. Publ. from the Dept. of Geology, Toronto University (1968).

  • Schilling, J. G., Winchester, J. W.: Rare earth contribution to the origin of Hawaiian lavas. Contr. Mineral. and Petrol. 23, 27–37 (1969).

    Google Scholar 

  • Sclater, J. G., Francheteau, J.: The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth. Geophys. J. 20, 509–542 (1970).

    Google Scholar 

  • Schmincke, H. U., Weibel, M.: A chemical study of Madeira and Azores rocks (1972—in press).

  • Tilley, C. E., Muir, I. D.: Oceanic basalt-trachyte association. Geol. Fören: Stockholm Fornhand. 85, 436–444 (1964).

    Google Scholar 

  • Watkins, N. D., Richardson, A., Mason, R. G.: Palaeomagnetism of the Macronesian Insular Region: Madeira. Earth Planet. Sci. Letters 1, 471–475 (1966).

    Google Scholar 

  • Watkins, N. D., Abdel-Monem, A.: Detection of the Gilsa geomagnetic polarity event on the island of Madeira. Geol. Soc. Am. Bull. 82, 191–198 (1971).

    Google Scholar 

  • Wilson, A. D.: A new method for the determination of ferrous iron in rocks and minerals. Bull. Geol. Surv. Great Britain 9, 56–58 (1955).

    Google Scholar 

  • Wyllie, P. J.: Experimental limits for melting in the Earth's crust and upper mantle. Am. Geophys. Union Monograph 14, 279–301 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D.J., Brown, G.C. Basalts from Madeira: A petrochemical contribution to the genesis of oceanic alkali rock series. Contr. Mineral. and Petrol. 37, 91–109 (1972). https://doi.org/10.1007/BF00371069

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371069

Keywords

Navigation