Skip to main content
Log in

An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A model is developed for the thermodynamic properties of Fe2+−Mg2+-aluminate-titanate-ferrite spinels of space group Fd3m. The model incorporates an expression for the configurational entropy of mixing which accounts for long-range order over tetrahedral and octahedral sites. Short-range order or departures from cubic symmetry are not considered. The non-configurational Gibbs energy is formulated as a second degree Taylor expansion in six linearly independent composition and ordering variables. The model parameters are calibrated to reproduce miscibility gap constraints, order-disorder phenomena in MgAl2O4 and MgFe2O4, and Fe2+−Mg2+ partitioning data between olivine and: (1) aluminate spinels; (2) ferrite spinels; (3) titanate spinels; (4) mixed aluminate-ferrite spinels. This calibration is achieved without invoking non-configurational excess entropies of mixing. The model predicts that the ordering state of FeAl2O4 is more normal than that of MgAl2O4. It also successfully accounts for heat of solution measurements and activity-composition relations in the constituent binaries. Phase equilibrium constraints require that the structure of Fe3O4 is more inverse than random at all temperatures and that Mg2+ has a strong tetrahedral site preference with respect to that of Fe2+. The analysis suggests that in the titanates short range order on octahedral sites may be significant at temperatures as high as 1300° C. Constraints developed from calibrating the thermodynamic properties of Fe2+−Mg2+-aluminatetitanate-ferrite spinel solid solutions permit extension of the database of Berman (1988) to include estimates of the end-member properties of hercynite (FeAl2O4), ulvöspinel (Fe2TiO4), MgFe2O4 and cubic Mg2TiO4. In constructing these estimates, provision is made for low-temperature magnetic entropy contributions and the energetic consequences of disordering the aluminates and the ferrites. These estimates are consistent with all of the available low-temperature adiabatic calorimetry, high-temperature heat content, and heat of solution measurements on the end-members. The analysis implies that there is a substantial heat capacity anomaly in the range 300°–900° C associated with disordering of the MgAl2O4 structure while that in FeAl2O4 becomes significant at temperatures above 700° C. The same heat capacity response in the ferrites indicates that the order/disorder transformation is coupled to the antiferromagnetic-paramagnetic transition in MgFe2O4 but takes place well above the ferrimagnetic-paramagnetic transition in magnetite. The proposed model is internally consistent with solution theory reported elsewhere for Fe2+−Mg2+ olivines and orthopyroxenes (Sack and Ghiorso 1989), rhombohedral oxides (Ghiorso 1990a) and the remaining end-member properties of Berman (1988).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto S-I (1954) Thermo-electric study of ferromagnetic minerals contained in igneous rocks. J Geomagn Geoelectr 6:1–14

    Google Scholar 

  • Akimoto S-I (1962) Magnetic properties of FeO−Fe2O3−TiO2 system as a basis of rock magnetism. J Phys. Soc Japan 17 [Suppl B-1]:706–1753

    Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe−Mg−Mn−Ti oxides: Fe−Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Anovitz LM, Treiman AH, Essene EJ, Hemingway BS, Westrum EF Jr, Wall VJ, Burriel R, Bohlen SR (1985) The heat-capacity of ilmenite and phase equilibria in the system Fe−Ti−O. Geochim Cosmochim Acta 49:2027–2040

    Google Scholar 

  • Appel J (1968) Polarons. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid State Physics 21:193–391

  • Aragón R, Honig JM (1988) Mean-field model of the Verwey transition in magnetite. Phys Rev B 37:209–218

    Google Scholar 

  • Aragón R, McCallister RH, (1982) Phase and point defect equilibria in the titanomagnetite solid solution. Phys. Chem Miner 8:112–120

    Google Scholar 

  • Aragón R, McCallister RH, Harrison HR (1984) Cation diffusion in titanomagnetites. Contrib Mineral Petrol 85:174–185

    Google Scholar 

  • Atlas LM, Sumida WK (1958) Solidus, subsolidus, and subdissociation phase equilibria in the system Fe−Al−O. J Am Ceram Soc 41:150–160

    Google Scholar 

  • Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv in Phys 18:41–102

    Google Scholar 

  • Banerjee SK O'Reilly W, Gibb TC, Greenwood NN (1967) The behavior of ferrous ions in iron-titanium spinels. J Phys Chem Solids 28:1323–1335

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O−K2O−CaO−MgO−FeO −Fe2O3−Al2O3−SiO2−TiO2−H2O−CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacities of minerals in the system Na2O−K2O−CaO−MgO−FeO−Fe2O3−Al2O3−SiO2−TiO2−H2O−CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Google Scholar 

  • Bertaut EF, Vincent H (1968) Etude par diffraction neutronique de la forme ordonnée de l'orthotitanate de manganèse-structure cristalline et structure magnétique. Solid State Commun 6:269–275

    Google Scholar 

  • Billiet Y, Morgenstern-Badarau I, Michel A (1967) Contribution à l'étude des structures spinelles. Cas de l'ordre 1:1 en site B. Bull Soc Fr Mineral Cristallogr 90:8–19

    Google Scholar 

  • Bleil U (1971) Cation distribution in titanomagnetites. Z Geophys 37:305–319

    Google Scholar 

  • Boden P, Glasser FP (1973) Phase relations in the system MgO −Al2O3−TiO2. Trans J Br Ceram Soc 72:215–220

    Google Scholar 

  • Bohlen SR, Dollase WA, Wall VJ (1986) Calibration and applications of spinel equilibria in the system FeO−Al2O3−SiO2. J Petrol 27:1143–1156

    Google Scholar 

  • Bonnickson KR (1954) High temperature heat contents of calcium and magnesium ferrites. J Am Chem Soc 76:1480–1482

    Google Scholar 

  • Bonnickson KR (1955a) High temperature heat contents of some titanates of aluminum, iron and zinc. J Am Chem Soc 77:2152–2154

    Google Scholar 

  • Bonnickson KR (1955b) High temperature heat contents of aluminates of calcium and magnesium. J Phys Chem 59:220–221

    Google Scholar 

  • Borovik-Romanov AS, Orlova MP (1957) Magnetic properties of cobalt and manganese carbonates. Sov Phys JETP 4:531–534

    Google Scholar 

  • Burton BP (1985) Theoretical analysis of chemical and magnetic ordering in the system Fe2O3−FeTiO3. Am Mineral 70:1027–1035

    Google Scholar 

  • Burton BP, Davidson PM (1988) Multicritical phase relations in minerals. In: Ghose S, Coey JMD, Salje F (eds) Structural and magnetic phase transitions in minerals. (Advances in physical geochemistry 7) Springer, New York Berlin Heidelberg, pp 60–90

    Google Scholar 

  • Callen HB, HarrisonSE, Kriessman CJ (1956) Cation distributions in ferrospinels: Theoretical Phys Rev 103:851–856

    Google Scholar 

  • Chakraverty BK (1980) Charge ordering in Fe3O4, Ti4O7 and bipolarons. Philos Mag B 42:473–478

    Google Scholar 

  • Chase MW, Curnutt JL, Hu AT, Prophet H, Syverud AN, Walker LC (1974) JANAF thermochemical tables, 1974 supplement. J Phys Chem Ref Data 3:311–480

    Google Scholar 

  • Chase MW, Curnutt JL, Prophet H, McDonald RA, Syverud AN (1975) JANAF thermochemical tables, 1975 supplement. J Phys. Chem Ref Data 4:1–175

    Google Scholar 

  • Chase MW, Curnutt JL, Prophet H, McDonald RA, Syverud AN (1978) JANAF thermochemical tables, 1978 supplement. J Phys. Chem Ref Data 7:793–940

    Google Scholar 

  • Chassagneux F, Rousset A (1976) Préparátion et étude structural des spinelles FeAl2-2zCr2zO4. J Solid State Chem 16:161–166

    Google Scholar 

  • Coey JMD, Ghose S (1988) Magnetic phase transitions in silicate minerals. In: Ghose S, Coey JMD, Salje E (eds) Structural and magnetic phase transitions in minerals. (Advances in physical geochemistry 7) Springer, New York Berlin Heidelberg, pp 162–184

    Google Scholar 

  • Cook FJ (1973) Analysis of specific heat data in the critical region of magnetic solids. J Phys. Chem Ref Data 2:11–24

    Google Scholar 

  • Coughlin JP, King EG, Bonnickson KR (1951) High-temperature heat contents of ferrous oxide, magnetite and ferric oxide. J Am Chem Soc 73:3891–3893

    Google Scholar 

  • Darken LS, Gurry RW (1953) Physical chemistry of metals. McGraw-Hill, New York

    Google Scholar 

  • DeGrave E, DeSitter J, Vandenberghe R (1975) On the cation distributions in the spinel system Mg2TiO4-(1-y)MgFe2O4. Appl Phys 7:77–80

    Google Scholar 

  • Delamoye P, Michel A (1969) Transformation cristallographie dans Torthotitanate de magnesium. C R Acad Sci Paris Ser C269:837–838

    Google Scholar 

  • Dickson BL, Smith G (1976) Low-temperature optical absorption and Mössbauer spectra of staurolite and spinel. Can Mineral 14:206–215

    Google Scholar 

  • Dieckmann R (1982) Defects and cation diffusion in magnetite (IV) Nonstoichiometry and point defect structure of magnetite (Fe3-δO4). Ber Bunsenges Phys Chem 86:112–118

    Google Scholar 

  • Dieckmann R, Schamlzried H (1977a) Defects and cation diffusion in magnetite (I). Ber Bunsenges Phys Chem 81:344–347

    Google Scholar 

  • Dieckmann R, Schmalzried H (1977b) Defects and cation diffusion in magnetite (II). Ber Bunsenges Phys Chem 81:414–419

    Google Scholar 

  • Dieckmann R, Mason TO, Hodge JD, Schmalzried H (1978) Defects and cation diffusion in magmetite (III) Tracer diffusion of foreign tracer cations as a function of temperature and oxygen potential. Ber Bunsenges Phys Chem 82:778–783

    Google Scholar 

  • Dieckmann R, Witt CA, Mason TO (1983) Defects and cation diffusion in magnetite (V) Electrical conduction, cation distribution and point defects in magnetite (Fe3-δO4). Ber Bunsenges Phys Chem 87:495–503

    Google Scholar 

  • Domb C, Hunter DL (1965) On the critical behavior of ferromagnets. Proc Phys Soc (London) 86:1147–1151

    Google Scholar 

  • Domb C, Sykes MF (1957) Specific heat of a ferromagnetic substance above the Curie point. Phys Rev 108:1415–1416

    Google Scholar 

  • Domb C, Sykes MF (1962) Effect of change of spin on the critical properties of the Ising and Heisengerg models. Phys. Rev 128:168–173

    Google Scholar 

  • Dzyaloshinsky I (1958) A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J Phys Chem Solids 4:241–255

    Google Scholar 

  • Engi M (1983) Equilibria involving Al−Cr spinel: Mg−Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences of geothermometry. Am J Sci 238A:29–71

    Google Scholar 

  • Epstein DJ, Frackiewicz B (1958) Some properties of quenched magnesium ferrites. J Appl Phys 29:376–377

    Google Scholar 

  • Gaballah I, Courtois A, Jeannot F, Gleitzer C (1975) Distribution cationique dans FeAl2O4 en fonction de divers traitements. CR Séances Acad Sci Ser C 280:1367–1370

    Google Scholar 

  • Ghiorso MS (1990a) Thermodynamic properties of hematite-ilmenite-geikielite solid solutions. Contrib Mineral Petrol 104:645–667

    Google Scholar 

  • Ghiorso MS (1990b) A note on the application of the Darken equation to mineral solid solutions with variable degrees of order-disorder. Am Mineral 75:539–543

    Google Scholar 

  • Ghose S (1988) Charge localization and associated crystallographic and magnetic phase transitions in Ilvaite, a mixed-valence iron silicate. In: Ghose S, Cocy JMD, Salje E (eds) Structural and magnetic phase transitions in minerals. (Advances in Physical Geochemistry 7) Springer, New York Berlin Heidelberg, pp 141–161

    Google Scholar 

  • Goodenough JB (1964) Jahn-Teller distortions induced by tetrahedral-site Fe2+ ions. J Phys Chem Solids 25:151–160

    Google Scholar 

  • Goodenough JB (1980) The Verwey transition revisited. In: Brown DM (ed) Mixed-valence compounds. D Reidel Publ Co, Boston, pp 413–425

    Google Scholar 

  • Gopal ESR (1966) Specific heats at low temperatures. Plenum Press, New York, 240 p

    Google Scholar 

  • Grønvold F, Sveen A (1974) Heat capacity and thermodynamic properties of synthetic magnetite (Fe3O4) from 300 to 1050 K. Ferrimagnetic transition and zero point entropy. J Chem Thermodyn 6:859–872

    Google Scholar 

  • Haas C (1965) Pase transitions in crystals with the spinel structure. J Phys Chem Solids 26:1225–1232

    Google Scholar 

  • Haubenreisser W (1961) Zur Theorie der Elektronenleitung im stöchiometrischen Fe3O4-Kristall (Magnetit) oberhalb des Übergangspunktes Tü=119,4° K. Phys Status Solidi 1:619–635

    Google Scholar 

  • Hill RJ (1984) X-ray powder diffraction profile refinement of synthetic hercynite. Am Mineral 69:937–942

    Google Scholar 

  • Hill RL, Sack RO (1987) Thermodynamic properties of Fe−Mg titaniferous magnetite spinels. Can Mineral 25:443–464

    Google Scholar 

  • Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Phys Chem Miner 4:317–340

    Google Scholar 

  • Holstein T (1959) Studies of polaron motion. Part II. The “small” polaron. Ann Phys 8:343–389

    Google Scholar 

  • Ihle D, Lorenz B (1986) Small-polaron conduction and short-range order in Fe3O4. J Phys C 19:5239–5251

    Google Scholar 

  • Ishikawa Y, Sato S, Syono Y (1971) Neutron and magnetic studies of a single crystal of Fe2TiO4. Tech Rep Inst Solid State Phys, Univ Tokyo A:455

  • Ishikawa Y, Sato S, Syono Y (1971) Neutron and magnetic studies of a single crystal of Fe2TiO4 J Phys. Soc Japan 31:452–460

    Google Scholar 

  • Ishikawa Y, Syono Y (1971a) Giant magnetostriction and magnetic anisotropy of Fe2TiO4. J Phys. Soc Japan 31:461–470

    Google Scholar 

  • Ishikawa Y, Syono Y (1971b) Giant magnetostriction due to Jahn-Teller distortion in Fe2TiO4. Phys Rev Lett 26:1335–1338

    Google Scholar 

  • Ishikawa Y, Syono Y, Akimoto S (1964) Neutron diffraction study of Fe3O4−Fe2TiO4 series. Annu Prog Rep, Rock Magn Group, Inst Solid State Phys. Univ Tokyo:14–20

  • Jamieson HE, Roeder PL (1984) The distribution of Mg and Fe2+ between olivine and spinel at 1300°C. Am Mineral 69:283–291

    Google Scholar 

  • Jensen SD, Shive PN (1973) Cation distribution in sintered titanomagnetites. J Geophys Res 78:8474–8480

    Google Scholar 

  • Katsura T, Wakihara M, Hara S-I, Sugihara T (1975) Some thermodynamic properties in spinel solid solutions with the Fe3O4 component. J Solid State Chem 13:107–113

    Google Scholar 

  • Kawai N (1956) Exsolution of titanomagnetites and its effect on rock-magnetism III. Proc Jpn Acad 32:464–468

    Google Scholar 

  • Kawai N, Kume S, Sasijima S (1954) Magnetism of rocks and solid phase transformations in ferromagnetic minerals. Proc Imp Acad Jpn 30:538–593

    Google Scholar 

  • Kelley KK, Naylor BF, Shomate CH (1946) The thermodynamic properties of manganese. US Bur Mines Tech Pap 686, 34 p

  • Kelley KK, Todd SS, King EG (1954) Heat and free energy for titanates of iron and the alkaline-earth metals. US Bur Mines Rept Invest 5059, 37 p

  • King EG (1954) Heat capacities at low temperatures and entropies at 298.16° K of calcium and magnesium ferrites. J Am Chem Soc 76:5849–5850

    Google Scholar 

  • King EG (1955) Heat capacities at low temperatures and entropies at 298.16° K of crystalline calcium and magnesium aluminates. J Phys. Chem 59:218–219

    Google Scholar 

  • King EG (1956) Heat capacities at low temperatures and entropies of five spinel minerals. J Phys. Chem 60:410–412

    Google Scholar 

  • King EG, Kelley KK (1959) Low-temperature heat capacities of copper ferrites (with a summary of entropies at 298.15° K of spinel minerals). US Bur Mines Rep Invest 5502

  • Koehler MF, Barany R, Kelley KK (1961) Heats and free energies of formation of ferrites and aluminates of calcium, magnesium, sodium, and lithium. US Bur Mines Rept Invest 5711

  • Kriessman CJ, Harrison SE (1956) Cation distributions in ferrospinels. Magnesium-manganese ferrite. Phys Rev 103:857–860

    Google Scholar 

  • Kündig W, Hargrove RS (1969) Electron hopping in magnetite. Solid State Comm 7:223–227

    Google Scholar 

  • Lavine JM (1959) Ordinary Hall effect in Fe3O4 and (NiO)0.75(FeO)0.25(Fe2O3) at room temperature. Phys. Rev 114:482–488

    Google Scholar 

  • Lawson AW (1947) On simple binary solid solutions. J Chem Phys. 15:831–842

    Google Scholar 

  • Lehmann J, Roux J (1984) Experimental and theoretical study of (Fe2+, Mg) (Al, Fe3+)2O4 spinels: activity-composition relationships, miscibility gaps, vacancy contents. Geochim Cosmochim Acta 50:1765–1783

    Google Scholar 

  • Lindsley DH (1965) Iron-titanium oxides. Carnegie Inst Washington Year 64:144–148

    Google Scholar 

  • Lindsley DH (1965) Some experiments pertaining to the magnetiteulvöspinel miscibility gap. Am Mineral 66:759–762

    Google Scholar 

  • Mason TO, Bowen HK (1981) Electronic conduction and thermopower of magnetite and iron-aluminate spinels. J Am Ceram Soc 64:237–242

    Google Scholar 

  • Mattioli GS, Wood BJ (1988) Magnetite activities across the MgAl2O4−Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contrib Mineral Petrol 98:148–162

    Google Scholar 

  • Miedema AR, Wielinga RF, Huiskamp WJ (1965) Experimental study of the body-centered-cubic Heisenberg ferromagnet. Physica (Utrecht) 31:1585–1598

    Google Scholar 

  • Mozzi RL, Paladino AE (1963) Cation distributions in magnesium ferrites. J Chem Phys 39:435–439

    Google Scholar 

  • Muan A, Hauck J, Lofall T (1972) Equilibrium studies with a bearing on lunar rocks. In: Proceedings of the Third Lunar Science Conference (Supp 3). Geochim Cosmochim Acta 1:185–196

  • Navrotsky A (1986) Cation distribution energetics and heats of mixing in MgFe2O4−MgAl2O4, ZnFe2O4−ZnAl2O4, and NiAl2O4−ZnAl2O4 spinels: study by high temperature calorimetry. Am Mineral 71:1160–1169

    Google Scholar 

  • Navrotsky A, Kleppa OJ (1967) The thermodynamics of cation distributions in simple spinels. J Inorg Nucl Chem 29:2701–2714

    Google Scholar 

  • Néel L (1955) Some theoretical aspects of rock magnetism. Adv Phys. 4:191–243

    Google Scholar 

  • Nell J, Wood BJ, Mason TO (1989) High-temperature cation distributions in Fe3O4−MgAl2O4−MgFe2O4−FeAl2O4 spinels from thermopower and conductivity measurements. Am Mineral 74:339–351

    Google Scholar 

  • Oka Y, Steinke P, Chatterjee ND (1984) Theromdynamic mixing properties of Mg(Al, Cr)2O4 spinel crystalline solution at high temperatures and pressures. Contrib Mineral Petrol 87:197–204

    Google Scholar 

  • Olsen E, Bunch TE (1970) Empirical derivation of activity coefficients for the magnesium-rich portion of the olivine solid solution. Am Mineral 55:1829–1842

    Google Scholar 

  • Ono K, Chandler L, Ito A (1968) Mössbauer study of the Ulvöspinel, Fe2TiO4. J Phys. Soc Jpn 25:174–176

    Google Scholar 

  • O'Neill HStC, Navrostky A (1983) Simple spinels: crstallographic parameters, cation radii, lattice energies, and cation distributions. Am Mineral 68, 181–194

    Google Scholar 

  • O'Neill HStC, Navrotsky A (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Am Mincral 69:733–753

    Google Scholar 

  • O'Neill HStC, Wall VJ (1987) The olivine-spinel oxygen geobarometer, the nickel precipitation curve and the oxygen fugacity of the upper mantle. J Petrol 28:1169–1192

    Google Scholar 

  • O'Reilly W, Banerjee SK (1965) Cation distribution in titanomagnetites ((1-x)Fe3O4−Fe2TiO4. Phys. Lett 17:237–238

    Google Scholar 

  • Orr RL, Coughlin JP (1952) High temperature heat contents of magnesium orthotitanate and magnesium dititanate. J Am Chem Soc 74:3186–3187

    Google Scholar 

  • Osborne MD, Fleet ME, Bancroft GM (1981) Fe2+−Fe3+ ordering in chromite and Cr-bearing spinels. Contrib Mineral Petrol 77:251–255

    Google Scholar 

  • Paladino AE (1960) Phase equilibrium in the ferrite region of the system FeO−MgO−Fe2O3. J Am Ceram Soc 43:183–191

    Google Scholar 

  • Pauthenet R, Bochirol L (1951) Aimantation spontanée des ferrites. J Phys. Radium 12:249–251

    Google Scholar 

  • Petric A, Jacob KT, Alcock CB (1981) Thermodynamic properties of Fe3O4−FeAl2O4 spinel solid solutions. J Am Ceram Soc 64:632–639

    Google Scholar 

  • Platzman PM (1963) The electrical transport properties of polarons. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Oliver and Boyd Ltd, London, pp 123–153

    Google Scholar 

  • Preudhomme J, Tarte P (1980) Studies of spinels VII. Order-disorder transition in the inverse germanate spinels Zn2-x (Co, Ni) x GeO4(x∼1). J Solid State Chem 35:272–277

    Google Scholar 

  • Price GD (1981) Subsolidus phase relations in the titanomagnetite solid solution series. Am Mineral 66:751–758

    Google Scholar 

  • Ramberg H, DeVore G (1951) The distribution of Fe2+ and Mg2+ in coexisting olivines and pyroxenes. J Geol 59:193–216

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pacals) pressure and at higher temperatures. Geol Sci Am Bull 1452, 456 p

  • Rossiter MJ (1965) The Mössbauer spectra of some spinel oxides containing iron. J Phys Chem Solids 26:775–779

    Google Scholar 

  • Roth WL (1963) Magnetic properties of normal spinels with only A-A interactions. Gen Electr Res Labs Rep 63-RL-3438 M

  • Roth WL (1964) Magnetic properties of normal spinels with only A-A interactions. J Phys 25:507–515

    Google Scholar 

  • Sack RO (1982) Spinels as petrogenetic indicators: Activity-composition relations at low pressures. Contrib Mincral Petrol 79:169–182

    Google Scholar 

  • Sack RO, Ghiorso MS (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4−Fe2SiO4−SiO2. Contrib Mineral Petrol 102:41–68

    Google Scholar 

  • Sack RO, Ebel DS, O'Leary MJ (1987) Tennahedrite thermochemistry and metal zoning. In: Helgeson HC (ed) Chemical transport in metasomatic processes. Reidel, Dordrecht Boston, pp 701–731

    Google Scholar 

  • Sato M (1972) Intrinsic oxygen fugacities of iron bearing oxide and silicate minerals under low total pressure. Geol Soc Am Mem 135:189–307

    Google Scholar 

  • Schmocker U, Waldner F (1976) The inversion parameter with respect to the space group of MgAl2O4 spinels. J Phys C9:L235–237

    Google Scholar 

  • Schmocker U, Boesch HR, Waldner F (1972) A direct determination of cation disorder in MgAl2O4 spinel by ESR. Phys Lett 40A:237–238

    Google Scholar 

  • Schnetlage R, Klemm DD (1975) Das System Fe−Cr−O bei 1000, 1095, and 1200° C. Neues Jahrb Mineral Abh 125:227–242

    Google Scholar 

  • Schulien S (1980) Mg−Fe partitioning between biotite and a supercritical chloride solution. Contrib Mineral Petrol 74:85–93

    Google Scholar 

  • Sharma KK, Langer K, Siefert T (1973) Some properties of spinel phases in the binary system MgAl2O4−MgFe2O4. Neues Jahrb Mineral 442–449

  • Shearer JS, Kleppa OJ (1973) The enthalpies of formation of MgAl2O4, MgSiO3, Mg2SiO4 and Al2SiO5 by oxide melt solution calorimetry. J Inorg Nucl Chem 35:1073–1078

    Google Scholar 

  • Shishkov VI, Lykasov AA, Il'ina AF (1980) Activity of the components of iron-magnesium spinel. Russ J Phys Chem 54:440–441

    Google Scholar 

  • Stephenson A (1969) The temperature dependent cation distribution in tiatanomagnetites. Geophys J R Astron Soc 18:199–210

    Google Scholar 

  • Stull DR, Prophet H (1971) JANAF thermochemical tables, 2nd edn. Nat Stand Ref Data Ser (NBS) NSRDS-NBS 37, 1141 p

  • Sykes MF, Martin JJ, Hunter DL (1967) Specific heat of a three dimensional Ising ferromagnet above the Curie temperature. Proc Phys Soc 91:671–677

    Google Scholar 

  • Sykes MF, Hunter DL, McKenzie DS, Heap BR (1972) Specific heat of a three dimensional Ising ferromagnet above the Curie temperature II. J Phys A 5:667–673

    Google Scholar 

  • Syono Y (1965) Magnetocrystalline anisotropy and magnetostriction of Fe3O4−Fe2TiO4 series — with special application to rock magnetism. Jpn J Geophys 4:71–143

    Google Scholar 

  • Syono Y, Ishikawa Y (1964) Magnetocrystalline anisotropy and magnetostriction of xFe2TiO4·(1-x)Fe3O4(x>0.5). J Phys Soc Jpn 19:1752–1753

    Google Scholar 

  • Syono Y, Fukai Y, Ishikawa Y (1971) Anomalous elastic properties of Fe2TiO4. J Phys Soc Jpn 31:471–476

    Google Scholar 

  • Tannhauser DS (1962) Conductivity in iron oxides. J Phys Chem Solids 23:25–34

    Google Scholar 

  • Tavger BA, Zaitsev VM (1956) Magnetic symmetry of crystals. Sov Phys JETP 3:430–436

    Google Scholar 

  • Taylor RW (1964) Phase equilibrium in the system FeO−Fe2O3−TiO2 at 1300° C. Am Mineral 49:1016–1030

    Google Scholar 

  • Tellier JC (1967) Sur la substitution dans le ferrite de magnésium des ions ferriques par les ions trivalents, tétravalents et pentavalents. Rev Chim Miner 4:325–365

    Google Scholar 

  • Thompson JB Jr (1960) Chemical reactions in crystals. Am Mineral 54:341–375

    Google Scholar 

  • Todd SS (1952) Low temperature heat capacities and entropies at 298.16° K of magnesium orthotitanate and magnesium dititanate. J Am Chem Soc 74:4669–4670

    Google Scholar 

  • Todd SS, King FG (1953) Heat capacities at low temperature and entropies at 298.16° K of titanomagnetite and ferric titanate. J Am Chem Soc 75:4547–4549

    Google Scholar 

  • Trestman-Matts A, Dorris SE, Kumarakrishnan S, Mason TO (1983) Thermoelectric determination of cation distributions in Fe3O4−Fe2TiO4. J Am Ceram Soc 66:829–834

    Google Scholar 

  • Trestman-Matts A, Dorris SE, Mason TO (1984) Thermoelectric determination of cation distributions in Fe3O4−MgFe2O4. J Am Ceram Soc 67:69–73

    Google Scholar 

  • Trinel-Dufour MC, Perrot P (1977) Etude thermodynamique des solution solides dans le systeme Fe−Mg−O. Ann Chim 2:309–318

    Google Scholar 

  • Turnock AC, Eugster HP (1962) Fe−Al oxides; phase relationships below 1000° C. J Petrol 3:533–565

    Google Scholar 

  • Verwey EJW (1939) Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 144:327–328

    Google Scholar 

  • Verwey EJW, de Boer JH (1937) Cation arrangement in a few oxides with crystal structures of the spinel type. Rec Trav Chim 35:531–540

    Google Scholar 

  • Verwey EJW, Haayman PW (1941) Electronic conductivity and transition point of magnetite (“Fe3O4”). Physica (Utrecht) 8:979–987

    Google Scholar 

  • Verwey EJW, Haayman PW, Romeijn FC (1947) Physical properties and cation arrangement of oxides with spinel structures. II. Electrical conductivity. J Chem Phys 15:181–187

    Google Scholar 

  • Verwey EJW, Heilmann EL (1947) Physical properties and cation arrangements of oxides with spinel structures. I. Cation arrangement in spinels. J Chem Phys 15:174–187

    Google Scholar 

  • Viertel HU, Seifert F (1980) Thermal stability of defect spinels in the system MgAl2O4−Al2O3. N Jahrb Mineral Abh 140:89–101

    Google Scholar 

  • Vincent EA, Wright JB, Chevallier R, Mathieu S (1957) Heating experiments on some natural titaniferous magnetites. Min Mag 31:624–655

    Google Scholar 

  • Vincent H, Joubert J-C, Durif A (1966) Etude structurale des formes ordonnées des orthotitanates de zinc et de manganèse. Bull Soc Chim Fr 1:246–250

    Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Halow I, Bailey SM, Schumm (1969) Selected values of chemical thermodynamic properties. Natl Bur Stid Tech Note 270-4, 152 p

  • Webster AH, Bright NFH (1961) The system iron-titanium-oxygen at 1200° C and oxygen partial pressures between 1 atm and 2X10-14 atm. J Am Ceram Soc 44:110–116

    Google Scholar 

  • Wechsler BA, Navrotsky A (1984) Thermodynamics and structural chemistry of compounds in the system MgO−TiO2. J Solid State Chem 55:165–180

    Google Scholar 

  • Wechsler BA, Lindsley DH, Prewitt CT (1984) Crystal structure and cation distribution in titanomagnetites (Fe3-xTixO4). Am Mineral 69:754–770

    Google Scholar 

  • Westrum EF Jr, Grønvold F (1969) Magnetite (Fe3O4) Heat capacity and thermodynamic properties from 5 to 350 K, low temperature transition. J Chem Thermodyn 1:543–557

    Google Scholar 

  • Wood BJ, Kirkpatrick RJ, Montez B (1986) Order-disorder phenomena in MgAl2O4 spinel. Am Mineral 71:999–1006

    Google Scholar 

  • Woodhouse D, White J (1955) Phase relationships of iron oxidecontaining spinels: III, further investigations on the system Fe−Mg−O and Fe−Mg−Cr−O. Trans Br Ceram Soc 54:333–366

    Google Scholar 

  • Wu CC, Mason TO (1981) Thermopower measurement of cation distribution in magnetite. J Am Ceram Soc 64:520–552

    Google Scholar 

  • Yamanaka T, Takéuchi Y (1983) Order-disorder transition in MgAlO4 spinel at temperatures up to 1700° C. Z Kristallogr 165:65–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sack, R.O., Ghiorso, M.S. An internally consistent model for the thermodynamic properties of Fe−Mg-titanomagnetite-aluminate spinels. Contr. Mineral. and Petrol. 106, 474–505 (1991). https://doi.org/10.1007/BF00321989

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321989

Keywords

Navigation