Skip to main content
Log in

Melilitites: partial melts of the thermal boundary layer?

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Silica-poor, calcium-rich melilitites form a chemical and isotopic end-member of the spectrum of mafic magmas of the Tertiary-Quaternary volcanic province of western and central Europe. We propose that these unusual magmas are derived by partial melting of the thermal boundary layer (TBL) at the base of the European lithosphere. The processes involved in the evolution of the TBL have been constrained using major and trace element and Nd-Sr-Pb isotope data for Tertiary melilitites from the Urach, Hegau, and Rhine graben regions of Germany. The initiation of boundary layer evolution is limited in time by a major phase of Permo-Carboniferous rifting and associated magmatism postdating the Hercynian orogeny which would have destroyed the existing TBL by delamination. Model calculations indicate that the isotopic composition of the melilitite source cannot develop within the TBL over geologically reasonable periods of time (250–300 Million years) if the TBL evolves solely by incorporation of small degree (<0.1%) partial melts from an underlying, convecting, depleted (MORB-source) mantle reservoir. On the basis of this observation, the regional geodynamic setting and the melilitite data, we propose that an isotopically distinct mantle plume, impinging on the base of the European lithosphere during the Early Cenozoic, is involved in the petrogenesis of the melilitite magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alibert C, Michard A, Albarède F (1983) The transition from alkali basalts to kimberlites: Isotope and trace element evidence from melilitites. Contrib Mineral Petrol 82:172–186

    Google Scholar 

  • Amundsen HEF (1987) Evidence for liquid immiscibility in the upper mantle. Nature 327:692–695

    Google Scholar 

  • Anderson D (1994) The sublithospheric mantle as the source of continental flood basalts; the case against the continental lithosphere and plume head reservoirs. Earth Planet Sci Lett 123: 269–280

    Google Scholar 

  • Brey G (1978) Origin of olivine melilitites: chemical and experimental constraints. J Volcanol Geothermal Res 3:61–88

    Google Scholar 

  • Brey G, Green DH (1975) The role of CO2 in the genesis of olivine melilitite. Contrib Mineral Petrol 49:93–103

    Google Scholar 

  • Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilitite+H2O+CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib Mineral Petrol 61:141–162

    Google Scholar 

  • Canil D (1990) Experimental study bearing on the absence of carbonate in mantle-derived xenoliths. Geology 18:1011–1013

    Google Scholar 

  • Chauvel C, Hofmann AW Vidal P (1992) HIMU-EM: the French Polynesian connection. Earth Planet Sci Lett 110:99–119

    Google Scholar 

  • Cloctingh S, Banda E (1992) Europe's lithosphere—physical properties In: Blundell D, Freeman R, Mueller S (eds) A continent revealed the European geotraverse. Cambridge University Press, Cambridge, pp 80–91

    Google Scholar 

  • Dautria JM, Dupuy C, Takherist D, Dostal J (1992) Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from the melilititic district of the Sahara basin. Contrib Mineral Petrol 111:37–52

    Google Scholar 

  • Downes H, Dupuy C (1987) Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth Planet Sci Lett 82:121–135

    Google Scholar 

  • Falloon TJ, Green DH (1990) Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology 18:195–199

    Google Scholar 

  • Faure G (1986) Principles of isotope geology, 2nd ed. Wiley, New York

    Google Scholar 

  • Fitton JG, Dunlop HM (1985) The Cameroon Line, West Africa and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet Sci Lett 72:23–38

    Google Scholar 

  • Gallagher K, Hawkesworth CJ (1992) Dehydration melting and the generation of continental flood basalts. Nature 358:57–59

    Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Google Scholar 

  • Gerlach DC, Stormer JCJr, Mueller PA (1987) Isotopic geochemistry of Fernando de Noronha. Earth Planet Sci Lett 85:129–144

    Google Scholar 

  • Glahn A, Granet M (1992) 3-D structure of the lithosphere beneath the southern Rhine Graben area. Tectonophysics 208:149–158

    Google Scholar 

  • Glahn A, Sachs PM, Achauer U (1992) A telescismic and petrological study of the crust and upper mantle beneath the geothermal anomaly of Urach/SW Germany. Phys Earth Planet Inter 69:176–206

    Google Scholar 

  • Hart SR (1984) The DUPAL anomaly: a large-scale isotopic anomaly in the southern hemisphere. Nature 309:753–756

    Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment. Science 256:517–520

    Google Scholar 

  • Hartman G, Wedepohl KH (1990) Metasomatically altered peridotite xenoliths from the Hessian Depression (northwest Germany). Geochim Cosmochim Acta 54:71–86

    Google Scholar 

  • Hoernle K, Schmincke H-U (1993a) The petrology of the tholeiites through melilite nephelinites on Gran Canaria, Canary Islands: crystal fractionation, accumulation and depths of melting. J Petrol 34:573–597

    Google Scholar 

  • Hoernle K, Schmincke H-U (1993b) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626

    Google Scholar 

  • Hoernle K, Tilton G, Schmincke H-U (1991) Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63

    Google Scholar 

  • Keller J, Brey G, Lorenz V, Sachs P (1990) IAVCEI 1990 pre-conference excursion 2A: volcanism and petrology of the Upper Rhine graben (Urach-Hegau-Kaiserstuhl). IAVCEI.

  • Latin DM, Dixon JE, Fitton JG, White N (1990) Rift-related magmatism in the North Sea Basin: implications for stretching mechanism. In: Hardman R, Brooks M (eds) Tectonic events responsible for Britain's oil and gas reserves. Geol Soc London Spec Publ 55:207–227

  • Le Bas MJ (1989) Nephelinitic and basanitic rocks. J Petrol 30:1299–1312

    Google Scholar 

  • Lorenz V (1986) The late Variscan phase: crustal extension and associated volcanism. In: Freeman R, Mueller S, Giese P (eds) Proceedings of the third EGT workshop. Eur Sci Foundation Strasbourg, pp 157–166

    Google Scholar 

  • Maaløe S, James D, Smedley P, Petersen S, Garmann LB (1992) The Koloa volcanic suite of Kauai, Hawaii. J Petrol 33:761–784

    Google Scholar 

  • McKenzie DP (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • McKenzie D, O'Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  • Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatised peridotite under water-saturated and water-undersaturated conditions. In: Kimberlites and related rocks, Vol 1. Geol Soc Aust Spec Publ 14, Blackwell, pp 571–581

  • Michard A, Albarède F (1985) Hydrothermal uranium uptake at ridge crests. Nature 317:244–246

    Google Scholar 

  • Pfiffner A (1992) Tectonic evolution of Europe—Alpine orogeny. In: Blundell D, Freeman R, Mueller S (eds) A continent revealed the European geotraverse. Cambridge University Press, Cambridge, pp 180–190

    Google Scholar 

  • Ringwood AE, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and related magmas. Earth Planet Sci Lett 113:521–538

    Google Scholar 

  • Rock NMS (1991) Lamprophyres. Blackie, London

    Google Scholar 

  • Rogers NW, Hawkesworth CJ, Palacz ZA (1992) Phlogopite in the generation of olivine melilitites from Namaqualand, South Africa and implications for element fractionation processes in the upper mantle. Lithos 28:347–365

    Google Scholar 

  • Rosenbaum JM (1993) Mantle phlogopite: a significant lead repository? Chem Geol Isot Geosci 106:475–483

    Google Scholar 

  • Rosenbaum JM, Wilson M, Downes H (1993a) The continental lithosphere as a magma source during intra-plate extension: Sr-Nd-Pb isotopic constraints. Terra Abstr 5:432

    Google Scholar 

  • Rosenbaum J, Wilson M, Bodinier J-L (1993b) Mantle phlogopite: Fingerprint of subduction? EOS AM Geophys union 74:680

    Google Scholar 

  • Rosenbaum JM, Wilson M, Downes H (1994) Europlum pudding: fluid and melt infiltration into the lithosphere. Abstr ICOG 8, USGS Circ 1107:271

    Google Scholar 

  • Schleicher H, Keller J, Kramm U (1990) Isotope studies on alkaline volcanics and carbonatites from the Kaiserstuhl, Federal Republic of Germany. Lithos 26:21–35

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Google Scholar 

  • Spakman W, van der Lee S, van der Hilst R (1993) Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys Earth Planet Inter 79:3–74

    Google Scholar 

  • Stosch HG, Lugmair GW (1986) Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere. Earth Planet Sci Lett 80:281–298

    Google Scholar 

  • Stosch HG, Seck HA (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ 42, pp 313–345

  • Thirlwall MF (1982) A triple filament method for rapid and precise analysis of rare earth elements by isotope dilution. Chem Geol 35:155–166

    Google Scholar 

  • Ulrych J, Povondra P, Rutsek J, Pivec E (1988) Melilititic and melilite-bearing subvolcanic rocks from the Plounice River Region, Czechoslovakia. Acta Univ Carol-Geol 2:195–231

    Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–345

    Google Scholar 

  • Weaver BL (1991) Trace element evidence for the origin of ocean island basalts. Geology 19:275–278

    Google Scholar 

  • Wedepohl KH, Gohn E, Hartmann G (1994) Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contrib Mineral Petrol 115:253–278

    Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Chapman and Hall, London

    Google Scholar 

  • Wilson M (1992) Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up. Geol Soc London Spec Publ 68, pp 241–255

  • Wilson M (1993a) Magmatism and the geodynamics of basin formation. Sediment Geol 86:5–29

    Google Scholar 

  • Wilson M (1993b) Geochemical characteristics of oceanic and continental basalts: a key to mantle dynamics? J Geol Soc London 150:977–990

    Google Scholar 

  • Wilson M, Downes H (1991) Tertiary-Quaternary extension-related alkaline magmatism in western and central Europe. J Petrol 32:811–849

    Google Scholar 

  • Wilson M, Downes H (1992) Mafic alkaline magmatism associated with the European Cenozoic rift system. Tectonophysics 208:173–182

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Google Scholar 

  • Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, M., Rosenbaum, J.M. & Dunworth, E.A. Melilitites: partial melts of the thermal boundary layer?. Contr. Mineral. and Petrol. 119, 181–196 (1995). https://doi.org/10.1007/BF00307280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307280

Keywords

Navigation