Skip to main content
Log in

Deep water formation and Quaternary glaciations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A large fraction of climatic varability on the Quaternary time scale can be explained by nonlinear interactions between the radiation balance of the global atmosphere-ocean system and the mass balance of Northern Hemisphere ice sheets. Recent analyses of paleoclimatic proxy data indicate a further important contribution to this variability from changes in deep-water formation occurring in the North Atlantic Subpolar Sea. We study the effects of these changes on variations in global temperature and ice volume characteristic of the late Quaternary. The novel framework of Boolean delay equations (BDEs) is used to formulate a conceptual model of the climatic system under study, and to analyze this formal model. Selfsustained oscillations in the intensity of the Atlantic Ocean's thermohaline circulation result from the interaction of sea-ice formation with the waxing and waning of continental ice sheets. The comparison of model results with paleoclimatic records suggests a considerable slowing down of the abyssal circulation during glacial episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barnola JM, Raynaud D, Neftel A, Oeschger H (1983) Co2 measurements on air from bubbles in polar ice: an interlaboratory comparison. Nature 303:410–413

    Google Scholar 

  • Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) (1984) Milankovitch and Climate: Understanding the response to astronomical forcing. 2 vols, D. Reidel, Dordrecht

    Google Scholar 

  • Bhattacharya K, Ghil M, Vulis IL (1982) Internal variability of an energybalance model with delayed albedo effects. J Atmos Sci 39:1747–1773

    Google Scholar 

  • Birchfield GE, Grumbine RW (1985) “Slow” physics of large continental ice sheets and underlying bedrock and its relation to the Pleistocene ice ages. J Geophys Res 90:11294–11302

    Google Scholar 

  • Birchfield GE, Weertman J (1978) A note on the spectral response of a model continental ice sheet. J Geophys Res 83C:4123–4125

    Google Scholar 

  • Birchfield GE, Weertman J, Lunde AT (1981) A paleoclimate model of Northern Hemisphere ice sheets. Quat Res 15:126–142

    Google Scholar 

  • Boyle EA, Keigwin LD (1982) Deep circulation of the Northern Atlantic over the last 200000 years: Geochemical evidence. Science 218:784–787

    Google Scholar 

  • Broccoli AJ, Manabe S (1986) The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. Climate Dyn 1:87–99

    Google Scholar 

  • Broecker WS (1982) Occan chemistry during glacial time. Geochim Cosmochim Acta 46:1689–1705

    Google Scholar 

  • Broecker WS, Takahashi T (1984) Is there a tie between atmospheric CO2 content and ocean circulation? Geophys Monogr 29:314–326

    Google Scholar 

  • Broecker WS, Peteet DM, Rind D (1985) Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315:21–25

    Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the earth Tellus 21:611–619

    Google Scholar 

  • Constantin P, Foias C (1985) Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Comm Pure Appl Math 38:1–27

    Google Scholar 

  • Corliss BH (1979) Quaternary Antaretic Bottom-Water history: deep-sea benthonic foraminiferal evidence from the Southeast Indian Ocean. Quat Res 12:271–289

    Google Scholar 

  • Crowley TJ (1983) The geologic record of climatic change. Rev Geophys Space Phys 21:828–877

    Google Scholar 

  • Dansgaard W, Clausen HG, Gundestrupp N, Hammer CU, Johnson SF, Kristinsdottir PM, Reeh N (1982) A new Greenland deep ice core. Science 218:1273–1277

    Google Scholar 

  • Dee D, Ghil M (1984) Boolean difference equation, I: Formulation and dynamic behavior. SIAM J Appl Math 44:111–126

    Google Scholar 

  • Donn WL, Ewing M (1966) A theory of ice ages III. Sciences 152:1706–1712

    Google Scholar 

  • Duplessy J-C (1978) Isotope studies. In: Gribbin J (ed) Climatic change. Cambridge Univ Press, London, pp 46–67

    Google Scholar 

  • Duplessy J-C, Shackleton NJ (1985) Response of global deep-water circulation to Earth's climatic change 135000–107000 years ago. Nature 316:500–507

    Google Scholar 

  • Duplessy J-C, Chenouard L, Vila F (1975) Weyl's theory of glaciation supported by isotopic study of Norwegian core K-11 Science 188:1208–1209

    Google Scholar 

  • Duplessy J-C, Delibrias G, Turon JL, Pujol C, Duprat J (1981) Deglacial warming of the Northeastern Atlantic Ocean: correlation with the paleoclimatic evolution of the European continent. Paleogeogr Paleoclimatol Paleoecol 35:121–144

    Google Scholar 

  • Duplessy J-C, Shackleton NJ, Matthews RK, Press, W, Ruddiman WF, Caralp M, Hendy CH (1984)13C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation. Quat Res 21:225–243

    Google Scholar 

  • Ewing M, Donn WL (1956) A theory of ice ages. Science 123:1061–1066

    Google Scholar 

  • Ewing M, Donn WL (1958) A theory of ice ages II. Science 127:1159–1162

    Google Scholar 

  • Fillon RH, Williams DF (1984) Dynamics of meltwater discharge from Northern Hemisphere ice sheets during the last deglaciation. Nature 310:674–677

    Google Scholar 

  • Ghil M (1976) Climate stability for a Sellers-type model. J Atmos Sci 33:3–20

    Google Scholar 

  • Ghil M (1985) Theoretical climate dynamics: An introduction. In: Ghil M, Benzi R, Parisi G (eds) Turbulence and predictability in geophysical fluid dynamics and climate dynamics, North-Holland, Amsterdam, pp 347–402

    Google Scholar 

  • Ghil M, Le Treut H (1981) A climate model with cryodynamics and geodynamics J Geophys Res 86:5262–5270

    Google Scholar 

  • Ghil M, Mullhaupt A (1985) Boolean delay equations, II: Periodic and aperiodic solutions J Stat Phys 41:125–173

    Google Scholar 

  • Ghil M, Saltzman B (1984) Oscillator models of climatic change. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds), Milankovitch and climate: Understanding the response to astronomical forcing, D Reidel, Dordrecht, Holland, pp 859–866

    Google Scholar 

  • Guckenheimer J, Holmes P (1983) Birurcation, vector fields and dynamical systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth's orbit: Pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Johnson RG, Andrews JT (1986) Glacial terminations in the oxygen isotope record of deep sea cores: Hypothesis of massive antarctic iceshelf destruction. Palaeogeogr Palaeoclimatol Palaeoecol 53:107–138

    Google Scholar 

  • Källen E, Crafoord C, Ghil M (1979) Free oscillations in a climate model with ice-sheet dynamics J Atmos Sci 36:2292–2302

    Google Scholar 

  • Knox F, McElroy M (1984) Changes in atmospheric CO2: influence of the marine biota at high latitudes. J Geophys Res 89D:4629–4637

    Google Scholar 

  • Labeyrie LD, Pichon JJ, Labracherie M, Ippolito P, Duprat J, Duplessy JC (1986) Melting history of Antarctica during the past 60000 years. Nature 322:701–706

    Google Scholar 

  • Leith CE (1980) Nonlinear normal mode initialization and quasi-geostrophic theory J Atmos Sci 37:958–968

    Google Scholar 

  • Le Trent H, Ghil M (1983) Orbital forcing, climatic interactions, and glaciation cycles. J Geophys Res 88:5167–5190, 8623

    Google Scholar 

  • Livingstone DA (1959) Theory of ice ages. Science 129:463–465 (including reply of Ewing M, Donn WL)

    Google Scholar 

  • Lohmann GP (1978) Response of the deep sea to ice ages. Oceanus 21:58–64

    Google Scholar 

  • Lorenz EN (1986) On the existence of a slow manifold. J Atmos Sci 43:1547–1557

    Google Scholar 

  • Lorius C, Merlivat L, Jouzel J, Pourchet M (1979) A 30000-yr isotope climatic record from Antarctic ice. Nature 280:644–648

    Google Scholar 

  • Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevitch YS, Kotlyakov VM (1985) A 150000-year climatic record from Antarctic ice. Nature 316:591–596

    Google Scholar 

  • Mercer JH (1983) Cenozoic glaciation in the Southern Hemisphere. Ann Rev Earth Planet Sci 11:99–132

    Google Scholar 

  • Newell RE (1974) Changes in the poleward energy flux by the atmosphere and ocean as a possible cause for ice ages. Quat Res 4:117–127

    Google Scholar 

  • Nicolis C (1982) A Boolean approach to climate dynamics. QJR Meteorol Soc 108:707–715

    Google Scholar 

  • North GR, Cahalan RF, Coakley JA Jr (1981) Energy balance climate models. Rev Geophys Space Phys 19:91–121

    Google Scholar 

  • Oerlemans J (1982) Glacial cycles and ice sheet modelling. Climate Change 4:353–374

    Google Scholar 

  • Oeschger H, Beer J, Siegenthaler U, Stauffer B, Dansgaard W, Langway CC (1984) Late glacial climate history from ice cores. Geophys Monogr 29:299–306

    Google Scholar 

  • Peltier R, Hyde W (1984) A model of the ice age cycle. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds), Milankovitch and climate: Understanding the response to astronomical forcing, D Reidel, Dordrecht, Holland, pp 565–580

    Google Scholar 

  • Pestiaux P (1984) Approche spectrale en modélisation paléoclimatique. Ph D Thesis, Univ Catholique de Louvain, Louvain-la-Neuve, Belgium

    Google Scholar 

  • Pollard D (1983) A coupled climate-ice sheet model applied to the Quaternary ice ages. J Geophys Res 88:7705–7718

    Google Scholar 

  • Ruddiman WF, McIntyre A (1981a) Oceanic mechanisms for amplification of the 23000-year ice-volume cycle. Science 212:617–627

    Google Scholar 

  • Ruddiman WF, McIntyre A (1981b) The North Atlantic Ocean during the last glaciation. Paleogeogr Paleoclimatol Paleoecol 35:145–214

    Google Scholar 

  • Saltzman B (1983) Climatic systems analysis. Adv Geophys 25:173–233

    Google Scholar 

  • Saltzman B, Sutera A (1984) A model of the internal feedback system involved in late Quaternary climatic variations. J Atmos Sci 41:736–745

    Google Scholar 

  • Saltzman B, Hansen AR, Maasch KA (1984) The late Quaternary glaciations as the response of a three-component feedback system to Earthorbital forcing. J Atmos Sci 41:3380–3389

    Google Scholar 

  • Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric PCO 2. Nature 308:621–624

    Google Scholar 

  • Schneider SH, Dickinson RE (1974) Climate modeling. Rev Geophys Space Phys 12:447–493

    Google Scholar 

  • Schnitker D (1982) Climatic variability and deep ocean circulation: Evidence from the Northern Atlantic. Paleogeogr Paleoclimatol Paleoecol 40:213–234

    Google Scholar 

  • Schubert G, Yuen DA (1982) Initiation of ice ages by creep instability and surging of the East Antarctic ice sheet. Nature 296:127–130

    Google Scholar 

  • Sellers WD (1969) A climate model based on the energy balance of the earth-atmosphere system. J Appl Meteorol 8:392–400

    Google Scholar 

  • Shackleton NJ, Imbrie J, Hall MA (1983) Oxygen and carbon isotope record of East Pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth Planet Sci Lett 65:233–244

    Google Scholar 

  • Siegenthaler U, Wenk T (1984) Rapid atmosphere CO2 variations and ocean circulation. Nature 308:624–626

    Google Scholar 

  • Stigebrandt A (1984) The North Pacific: A global-scale estuary. J Phys Oceanogr 14:464–470.

    Google Scholar 

  • Stigebrandt A (1985) On the hydrographic and ice conditions in the northern North Atlantic during different phases of a glaciation cycle. Paleogeogr Paleoclimatol Paleoccol 50:303–321

    Google Scholar 

  • Stommel H (1958) The abyssal circulation. Deep Sea Res 5:80–82

    Google Scholar 

  • Thomas R (1973) Boolean formalization of genetic control circuits. J Theoret Biol 42:563–585

    Google Scholar 

  • Thomas R (ed, 1979) Kinetic logic: An boolean approach to the analysis of complex regulatory systems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weertman J (1976) Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261:17–20

    Google Scholar 

  • Weyl PK (1968) The role of the oceans in climatic change: A theory of the ice ages. Meteorol Monogr 8 (30):37–62

    Google Scholar 

  • Worthington LV (1968) Genesis and evolution of water masses. Meteorol Monogr 8(30):63–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghil, M., Mullhaupt, A. & Pestiaux, P. Deep water formation and Quaternary glaciations. Climate Dynamics 2, 1–10 (1987). https://doi.org/10.1007/BF01088850

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01088850

Keywords

Navigation