Skip to main content
Log in

Recovery after anaerobic metabolism in the leech (Hirudo medicinalis L.)

  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Medicinal leeches (Hirudo medicinalis L.) responded to self-induced hypoxia (72 h) with typical anaerobic metabolism characterized by a decrease in adenylate energy charge, utilization of the substrates glycogen and malate, and accumulation of the main anaerobic endproducts succinate and propionate. Propionate was also excreted into the medium. Ammonia excretion was suppressed. Aerobic recovery resulted in a profound O2 debt. Resynthesis of ATP was completed within 30 min. Disposal of succinate and restoring of malate required 2–3 h, and clearance of propionate and recharging of glycogen 6–12 h. Ammonia excretion did not exceed normoxic rates and excretion of propionate during recovery accounted for only 10% of total propionate accumulated during hypoxia. It is postulated that the clearance of succinate and propionate involves oxidation but also resynthesis of malate and glycogen. During hypoxia and recovery blood osmolality remained constant. The Na+ and Cl- ion concentrations in blood, the decrease of which was nearly equimolar during hypoxia, were re-established following different time-courses. Na+ concentration returned to normoxic levels after 2–3 h. The delayed increase in Cl- concentration, however, correlating with 6–12 h necessary to clear blood propionate, is interpretated as an anion regulating effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEC:

adenylate energy charge; fw, fresh weight

HPLC:

high-performance liquid chromatography

SCCA:

shortchain carboxylic acids

References

  • Bergmeyer HU (1984/1985) Methods of enzymatic analysis, vols VI–VIII. Verlag Chemie, Weinheim, Deerfield Beach, Fla, Basel

    Google Scholar 

  • De Vooys CGN, De Zwaan A (1978) The rate of oxygen consumption and ammonia excretion by Mytilus edulis after various periods of exposure to air. Comp Biochem Physiol 60:343–347

    Google Scholar 

  • De Zwaan A (1991) Molluscs. In: Bryant C (ed) Metazoan life without oxygen. St Edmundsbury press, Suffolk, UK, pp 186–217

    Google Scholar 

  • Ellington WR (1982) Metabolic responses of the sea anemone Bundosoma cavernata (Bosc) to declining oxygen tensions and anoxia. Physiol Zool 55:240–249

    Google Scholar 

  • Ellington WR (1983) The recovery from anaerobic metabolism in invertebrates. J Exp Zool 228:415–444

    Google Scholar 

  • Hardewig I, Pörtner HO, Grieshaber MK (1992) The influence of hypercapnia on anaerobic propionate synthesis in the lugworm Arenicola marina. Verh Dtsch Zool Ges 85:20

    Google Scholar 

  • Heereid CF (1980) Hypoxia in invertebrates. Comp Biochem Physiol 67A:311–320

    Google Scholar 

  • Hildebrandt JP (1992) External CO2 levels influence energy yielding metabolic pathways under hypoxia in the leech Hirudo medicinalis. J Exp Zool 261:379–386

    Google Scholar 

  • Hildebrandt JP, Zerbst-Boroffka I (1992) Osmotic and ionic regulation during hypoxia in the medicinal leech, Hirudo medicinalis L. J Exp Zool 263:374–381

    Google Scholar 

  • Hipp E, Sedlmeier UA, Hoffmann KH (1984) Aerobic metabolic trends after anoxia in the freshwater oligochaete, Tubifex. Comp Biochem Physiol 78B:125–129

    Google Scholar 

  • Hoeger U, Wenning A, Greisinger U (1989) Ion homeostasis in the leech: contribution of organic anions. J Exp Biol 147:43–51

    Google Scholar 

  • Hoffmann KH, Seuss J, Hipp E, Sedlmeier UA (1986) Aerobic and anaerobic metabolism in Tubifex, a freshwater oligochaete. Zool Beitr 30:153–170

    Google Scholar 

  • Hoffmann KH, Wulf A (1993) Comparative studies of integumentary uptake of short-chain carboxylic acids by freshwater oligochaetes. Comp Biochem Physiol 104A:169–174

    Google Scholar 

  • Kamp G (1989) Biochemische und biophysikalische (NMR) Untersuchungen suchungen zur Regulation des anaeroben Energiestoffwechsels bei marinen Invertebraten. Habilitationsschrift, Universität Münster, Germany

    Google Scholar 

  • Mustafa TJ, Seuss JB, Jorgensen JB, Hoffmann KH (1983) Gluconeogenesis in facultative anaerobic invertebrates: Evidence for oxalacetate decarboxylation and anaerobic end product incorporation into glycogen from tissues of Tubifex sp. J Comp Physiol 149:477–483

    Google Scholar 

  • Pörtner HO, Surholt B, Grieshaber M (1979) Recovery from anaerobiosis of the lugworm, Arenicola marina L.: changes of metabolite concentrations in the body-wall musculature. J Comp Physiol 133:227–231

    Google Scholar 

  • Pörtner HO, Andersen NA, Heisler N (1991) Proton-equivalent ion transfer in Sipunculus nudus as a function of ambient oxygen tension: relationships with energy metabolism. J Exp Biol 156:21–39

    Google Scholar 

  • Putzer V, Gnaiger E, Lackner R (1985) Flexibility of anaerobic metabolism in aquatic oligochaetes (Tubifex sp.). Biochemical and calorimetric changes induced by deproteinized hydrolysate of bovine blood. Comp Biochem Physiol 82A:965–970

    Google Scholar 

  • Putzer V, De Zwaan A, Wieser W (1990) Anaerobic energy metabolism in the oligochaete Lumbriculus variegatus Müller. J Comp Physiol B 159:707–715

    Google Scholar 

  • Rajakylä E (1981) Separation and determination of some organic acids and their sodium salts by high-performance liquid chromatography. J Chromatogr 218:695–701

    Google Scholar 

  • Robin Y, Roche J (1965) Reparation biologique des guanidines substituees chez des vers terrestres et d'eau douce (Oligochetes, Hirudinees, Turbellaries) recoltes en hongrie. Comp Biochem Physiol 14:453–461

    Google Scholar 

  • Schöttler U, Bennet EM (1991) Annelids. In: Bryant C (ed) Metazoan life without oxygen. St. Edmundsbury Press, Suffolk, UK, pp 165–185

    Google Scholar 

  • Schöttler U, Schroff G (1976) Untersuchungen zum anaeroben Glykogenabbau bei Tubifex tubifex M. J Comp Physiol 108:243–254

    Google Scholar 

  • Schroff G, Schöttler U (1977) Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta). J Comp Physiol 116:325–336

    Google Scholar 

  • Seuss J, Hipp E, Hoffmann KH (1983) Oxygen consumption, glycogen content and the accumulation of metabolites in Tubifex during aerobic-anaerobic shift and under progressing anoxia. Comp Biochem Physiol 75A:557–562

    Google Scholar 

  • Seuss J, Hipp E, Höhenberger A, Hoffmann KH (1984) Physikalische, chemische und biologische Charakterisierung zweier Tubificiden-Standorte: Anpassungen im Energiestoffwechsel der Würmer an die natürlichen Lebensbedingungen. Archs Hydrobiol 100:45–59

    Google Scholar 

  • Wegener G (1988) Oxygen availability, energy metabolism, and metabolic rate in invertebrates and vertebrates. In: Acker H (ed) Oxygen sensing in tissues. Springer, Berlin, Heidelberg, pp 13–35

    Google Scholar 

  • Wichmann A (1993) Kalorimetrische Untersuchungen an Hirudo medicinalis L. während Normoxie, Anoxie und anschließender Erholung. Diplomarbeit, Fachbereich Biologie, Freie Universität Berlin, Germany

  • Wollenberger A, Ristau O, Schoffa G (1960) Eine einfache Technik der extrem schnellen Abkühlung größerer Gewebestücke. Pflügers Arch 270:399–412

    Google Scholar 

  • Womersley C, Drinkwater L, Crowe JH (1985) Separation of tricarboxylic acid cycle acids and other related organic acids in insect haemolymph by high-performance liquid chromatography. J Chromatogr 318:112–116

    Google Scholar 

  • Zebe E, Salge U, Wiemann C, Wilps H (1981) The energy metabolism of the leech Hirudo medicinalis in anoxia and muscular work. J Exp Zool 218:157–163

    Google Scholar 

  • Zerbst-Boroffka I (1970) Organische Säurereste als wichtigste Anionen im Blut von Hirudo medicinalis. Z Vergl Physiol 70:313–321

    Google Scholar 

  • Zurburg W, Bont AMT, Zwaan A de (1982) Recovery from exposure to air and the occurrence of strombine in different organs of the sea mussel Mytilus edulis L. Mol Physiol 2:135–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H., Zerbst-Boroffka, I. Recovery after anaerobic metabolism in the leech (Hirudo medicinalis L.). J Comp Physiol B 163, 574–580 (1993). https://doi.org/10.1007/BF00302116

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00302116

Key words

Navigation