Skip to main content
Log in

Colour vision in butterflies

I. Single colour experiments

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    The retinula cells ofVanessa are similar in physiological properties, including spectral sensitivityS(λ) and negative electrical coupling, to those already described inPapilio, except that red-sensitive cells have not been found in either retina or lamina.

  2. 2.

    In the dark-adapted eye, with a stimulus of one colour, lamina ganglion cells yield only hyperpolarizations.

  3. 3.

    Some lamina ganglion cells (LMC's) have a broad flatS(λ) with angular sensitivity showing that they receive summed input from only one ommatidium. Others have narrowS(λ) and narrow field suggesting that primary receptors from single ommatidia interact on or before reaching them. Narrow peaks are near 500 or 550 nm, but not spread through the spectrum, suggesting colour specific behaviour rather than colour vision.

  4. 4.

    Vanessa itea, V. kershawi, Precis villida andHeteronympha merope all have optomotorS(λ) similar to the curves for green-sensitive photoreceptors, with broad peak between 500 and 550 nm.

  5. 5.

    Optomotor responses of butterflies fall off rapidly around 0.1 cd·m−2, whereas insects with superposition eyes are 100 times more sensitive. Calibrations suggest that the butterfly optomotor threshold is well above the photon flux that yields abundant bumps in the retinula cells.

  6. 6.

    There is difficulty in reconciling theS(λ) of the optomotor response with theS(λ) of any of the individual LMC's.

  7. 7.

    The physiological properties of receptors, LMC's and deep optic lobe units are brought together in a discussion of insect colour vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LMC :

lamina monopolar cell

PS :

polarization sensitivity

S(λ) :

spectral sensitivity

Δρt:

angular width of the field at 50% contour

References

  • Arnett DW (1972) Spatial and temporal integration properties of units of first optic ganglion of dipterans. J Neurophysiol 35:429–444

    Google Scholar 

  • Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der FliegeMusca domestica. Kybernetik 2:15–28

    Google Scholar 

  • Helversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R (1983) Retinula cell responses in a moth superposition eye. Proc R Soc Lond B 220:47–68

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R, Matic T (1983) Single-electrode studies on the retina of the butterflyPapilio. J Comp Physiol 150:271–294

    Google Scholar 

  • Kaiser W, Liske E (1974) Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J Comp Physiol 89:391–408

    Google Scholar 

  • Laughlin SB (1974) Neural integration in the first optic neuropile of dragonflies. J Comp Physiol 92:357–375

    Google Scholar 

  • Laughlin SB (1975) Receptor and interneuron light-adaptation in the dragonfly visual system. Z Naturforsch 30c:306–308

    Google Scholar 

  • Laughlin SB (1981) Neural principles in the visual system. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6B) Springer, Berlin Heidelberg New York, pp 133–280

    Google Scholar 

  • Laughlin SB, Hardie RC (1978) Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly. J Comp Physiol 128:319–340

    Google Scholar 

  • Matic T (1983) Electrical inhibition in the retina of the butterflyPapilio. Four types of photoreceptors. J Comp Physiol 152:169–182

    Google Scholar 

  • Maxwell JC (1855) Experiments on colour, as perceived by the eye, with remarks on colour blindness. Trans R Soc (Edinburgh) 21:275–297

    Google Scholar 

  • Meinertzhagen IA (1976) The organization of perpendicular fibre pathways in the insect optic lobe. Phil Trans R Soc Lond B 274:555–596

    Google Scholar 

  • Meinertzhagen IA, Menzel F, Kahle G (1983) The identification of spectral receptor types in the retina and lamina of the dragonflySympetrum rubicundulum. J Comp Physiol 151:295–310

    Google Scholar 

  • Menzel R (1974) Spectral sensitivity of monopolar cells in the bee lamina. J Comp Physiol 93:337–346

    Google Scholar 

  • Menzel R, Lieke R (1983) Antagonistic colour effects in spatial vision of honeybees. J Comp Physiol 151:441–448

    Google Scholar 

  • Milde J (1978) Bestimmung der spektralen Empfindlichkeit in verschiedenen Augenbereichen der Biene. Diplomarbeit, Freie Universität Berlin

  • Ribi WA (1981) The first optic ganglion of the bee. IV. Cell Tissue Res 215:443–464

    Google Scholar 

  • Rodieck RW (1973) The vertebrate retina. Freeman, San Francisco

    Google Scholar 

  • Shaw SR (1968) Organization of the locust retina. Symp Zool Soc Lond 23:135–163

    Google Scholar 

  • Shaw SR (1975) Retinal resistance barriers and electrical lateral inhibition. Nature 255:480–483

    Google Scholar 

  • Srinivasan MV (1983) Should directional movement discrimination necessarily be ’colour-blind’. Paper at 15th Ann USGEB/USSBE meeting. March 1983 Fribourg Misericorde

  • Strausfeld NJ, Blest AD (1970) Golgi studies on insects Part I. The optical lobes of Lepidoptera. Phil Trans R Soc Lond 258:81–134

    Google Scholar 

  • Strausfeld NJ, Campus-Ortega JA (1977) Vision in insects. Pathways possibly underlying neural adaptation and lateral inhibition. Science 195:894–847

    Google Scholar 

  • Swihart SL (1970) The neural basis of colour vision in the butterfly,Papilio troilus. J Insect Physiol 16:1623–1636

    Google Scholar 

  • Swihart SL (1972a) The neural basis of colour vision in the butterfly,Heliconius erato. J Insect Physiol 18:1015–1025

    Google Scholar 

  • Swihart SL (1972b) Modelling the butterfly visual pathway. J Insect Physiol 18:1915–1928

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Vision in invertebrates (Handbook of sensory physiology, vol VII/6C) Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Young T (1802) On the theory of light and colours. Phil Trans R Soc Lond 1802:12–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horridge, G.A., Marcelja, L. & Jahnke, R. Colour vision in butterflies. J. Comp. Physiol. 155, 529–542 (1984). https://doi.org/10.1007/BF00611917

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611917

Keywords

Navigation