Skip to main content
Log in

Speckle tomography of a gas flame

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The present work is concerned with an experimental setup for studying phase objects using multi-directional speckle photography. A mathematical description of light propagation in an optically inhomogeneous medium and a means of speckle tomography of refractive coefficient distributions are given. Recommendations on two-dimensional refractive coefficient and temperature distributions in a flame of a candle illuminated in four directions are made. The obtained results evidence that speckle photography may be a basis for tomographic studies of temperature fields in different cross-sections of an object. A speckle shift error is about 5% while the one in reconstructing local temperatures does not exceed 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

radiation pulse energy

I(η) :

light intensity at a point with the coordinate η

I 0 :

light intensity at the Young's fringe centre

I′ :

uniform illumination in the Young's fringe plane

J :

integral in the Radon transform

K :

Gladstone-Dale constant for a probing laser wavelength

L 1 :

distance from the developed specklegram to the screen

L i :

distance from the speckle generator to the coordinate system centre in the optical path direction

δ f :

distance between the Young fringes

T :

temperature

n :

refractive index

n 0 :

refractive index of an undisturbed medium

p, s, x, y :

coordinates

α i :

angle for its optical path direction

β :

angle of inclination of the Young fringes relative to the horizontal axis

δ :

speckle shift on a specklegram

Δ :

speckle field shift at a given point due to inhomogeneity refraction

Δx, Δy :

speckle shift at a point along the appropriate coordinate axes

δ i (p) :

speckle field shift distribution for the ith direction

{ovΔ} :

relative error

Δ m :

error at a maximum point

ɛ :

random error

λ :

radiation wavelength

ϱ :

medium density

τ :

laser radiation pulse time

ϕ :

refraction angle distribution for beams of the ith direction

ψ :

function in the Radon transform

References

  • Achasov, O. V.; Kudryavtsev, N. N.; Novikov, S. S.; Soloukhin, R. I.; Fomin, N. A. 1985: Diagnostics of nonequilibrium states in molecular lasers. Nauka Tekh. 1–231

  • Almen, C. W. 1973: Astrophysical quantities. London: Atlone Press

    Google Scholar 

  • Blinkov, G. N.; Soloukhin, R. I.; Fomin, N. A. 1986: Speckle photography of density gradients in a free flame. Probl. Heat Mass Trans. 86, 92–97

    Google Scholar 

  • Born, M.; Wolf, E. 1964: Principles of optics. New York: Pergamon Press

    Google Scholar 

  • Erbeck, R.; Merzkirch, W. 1988: Speckle photographic measurement of turbulence in an air stream with fluctuating temperature. Exp. Fluids 6, 89–93

    Google Scholar 

  • Farrell, P. V.; Hofeldt, D. L. 1984: Temperature measurement in laser using speckle photography. Appl. Opt. 23, 1055–1059

    Google Scholar 

  • Fomin, N. A. 1987: Speckle photography as applied for gas-dynamic flow diagnostics. Minsk: HMTI Press, Preprint 44, 43

    Google Scholar 

  • Herman, G. T. 1980: Image reconstruction from projections. Fundamentals of computerized tomography. New York: Academic Press

    Google Scholar 

  • Jones, P.; Wykes, C. 1983: Holographic and speckle interferometry. Cambridge: Cambridge University Press

    Google Scholar 

  • Merzkirch, W. 1987: Speckle photography as an experimental tool for fluid flow measurements. Proc. Int. Congr. Laser Applications Electroopt. L. I. A. Vol. 63, pp. 85–88 (ICALEO '87), San Diego

  • Picalov, V. V.; Preobrazhensky, N. G. 1987: Reconstructive tomography in gasdynamics and physics of plasma. Novosibirsk: Nauka

    Google Scholar 

  • Reuss, D. L. 1983: Temperature measurements in a radially symmetric flame using holographic interferometry. Combust. Flame 49, 207–219

    Article  Google Scholar 

  • Soloukhin, R. I.; Fomin, N. A. 1987: Speckle photography of density fields in gas-phase reacting flows. Proc. Int. Seminar Gas-Phase Flame Structure. Novosibirsk: Press Inst. Theor. Appl. Mech., Siberian Branch USSR Acad. Sci.

    Google Scholar 

  • Wernekinck, U. 1985: Anwendung der Speckle-Photographie zur Sichtbarmachung und Messung von Strömungen mit veränderlicher Dichte. VDI-Fortschritt-Berichte, Reihe 8, Nr. 95. Düsseldorf: VDI-Verlag

    Google Scholar 

  • Wernekinck, U.; Merzkirch, W.; Fomin, N. A. 1985: Measurement of light deflection in a turbulent density field. Exp. Fluids 3, 206–208

    Article  Google Scholar 

  • Zaviyalov, Yu. S.; Krasov, B. I.; Miroshnichenko, V. L. 1980: Methods of spline functions. Moscow: Nauka

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinkov, G.N., Fomin, N.A., Rolin, M.N. et al. Speckle tomography of a gas flame. Experiments in Fluids 8, 72–76 (1989). https://doi.org/10.1007/BF00203067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203067

Keywords

Navigation