Skip to main content
Log in

Infrared absorption of silane, ammonia, acetylene and diborane in the range of the CO2 laser emission lines: Measurements and modelling

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Absorption spectra of the gases SiH4, NH3, C2H2 and of SiH4/Ar and SiH4/B2H6 mixtures have been measured in the spectral range of the CO2 laser from 9.2 to 10.8 µm. In agreement with literature, silane shows the highest absorption (absorption coefficient ∝ = 3.3 × 10−2 Pa−1 m−1). The deviation of the measured absorption behaviour of silane from literature, as far as the pressure dependence is concerned, can be explained by the enhanced spectral energy density in our experiment. This is confirmed by a rate-equation model involving the basic mechanisms of V-V and V-T energy transfer between vibrationally excited silane molecules. In contrast to silane, the absorption coefficient ∝ of NH3 at the 10P(20) laser line is 4.5 × 10−4 Pa−1 m−1 atp = 20 kPa and has its maximum of 4.5 × 10−3 Pa−1 m−1 at the 10R(6) laser line. For C2H2 and B2H6, ∝ is even less ( ≤ 2.1 Ò 10−5 Pa−1 m−1 for C2H2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Förster, M.v. Hoesslin, J.H. Schäfer, J. Uhlenbusch, W. Viöl: InProc. 10th Int'l Symp. on Plasma Chemistry, ed. by U. Ehlemann, H.G. Lergon, K. Wiesemann,1, 1.4–23p1snow, Bochum, Germany (1991) paper 1.4-23p1-1.4-23p6

    Google Scholar 

  2. J. Förster, M.v. Hoesslin, J.H. Schäfer, J. Uhlenbusch: InProc. 11th Int'l Symp. on Plasma Chemistry, ed. by J. Harry, Loughborough, UK (1993) pp. 1739–1744

    Google Scholar 

  3. M.v. Hoesslin, J. Förster, J.H. Schäfer, J. Uhlenbusch: Appl. Phys. B61, 367 (1995)

    Google Scholar 

  4. J.S. Haggerty, W.R. Cannon: InLaser Induced Chemical Processes, ed. by J.I. Steinfeld (Plenum, New York, 1981) Chap. 3, pp. 165–241

    Google Scholar 

  5. R.R. Patty, G.M. Russwurm, W.A. McClenny, D.R. Morgan: Appl. Opt.13, 2850 (1974)

    Google Scholar 

  6. R.C. Lord, E. Nielsen: J. Chem. Phys.19, 1 (1951)

    Google Scholar 

  7. W.J. Lehmann, C.O. Wilson, I. Shapiro: J. Chem. Phys.28, 781 (1958)

    Google Scholar 

  8. I.N. Knyazev, N.P. Kuzmina, V.S. Letokhov, V.V. Lobko, A.A. Sarkisyan: Appl. Phys.22, 429 (1980)

    Google Scholar 

  9. R.V. Ambartzumian, N.P. Furzikov, Yu.A. Gorokhov, V.S. Letokhov, G.N. Makarov, A.A. Puretzkii: Opt. Commun.18, 517 (1976)

    Google Scholar 

  10. E.M. Alonso, R.J. Angelo, E.J. Quel: Appl. Phys. B47, 233 (1988)

    Google Scholar 

  11. M.L. Azcarate, E.J. Quel: Appl. Phys. B47, 223 (1988)

    Google Scholar 

  12. M. Snels, R. Larciprete, R. Fantoni, E. Borsella, A. Giardini-Guidoni: Chem. Phys. Lett.122, 480 (1985)

    Google Scholar 

  13. J.W.C. Johns, W.A. Kreiner, J. Susskind: J. Mol. Spectrosc.60, 400 (1976).

    Google Scholar 

  14. J. Förster: Laserchemische Erzengung, Charakterisierung und Verdichtung ultrafeiner SiC- und SiC/B-Pulver. Dissertation, Heinrich-Heine-Universität Düsseldorf, Germany (1995)

    Google Scholar 

  15. H. Stafast: Appl. Phys. A45, 93 (1988)

    Google Scholar 

  16. W. Fuß: Private communications, Max-Planck Institut für Quantenoptik, München, Germany (1994)

    Google Scholar 

  17. K. Smith, J.K. Thomson:Computer Modelling of Gas Lasers (Plenum, New York 1978)

    Google Scholar 

  18. T. Doerk, J. Ehlbeck, P. Jauernik, J. Stanco, J. Uhlenbusch, T. Wottka: J. Phys. D.26, 1015 (1993)

    Google Scholar 

  19. E.A. Gregory, M.M. Maricq, R.M. Siddles, C.T. Wickham-Jones, C.J.S.M. Simpson: J. Chem. Phys.78(6), 3881 (1983)

    Google Scholar 

  20. M.v. Hoesslin: Aufbauener Box-CARS-Diagnostik zur Messung von räumlichen Dichte- und Temperatur profilen in einer laser induzierten chemischen Reaktionszone. Dissertation, Heinrich-Heine-Universität Düsseldorf, Germany (1993)

    Google Scholar 

  21. G. Herzberg:Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, (Van Nostrand Reinhold, New York 1944) p. 81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, J., Hagen, T., von Hoesslin, M. et al. Infrared absorption of silane, ammonia, acetylene and diborane in the range of the CO2 laser emission lines: Measurements and modelling. Appl. Phys. B 62, 263–272 (1996). https://doi.org/10.1007/BF01080954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01080954

PACS

Navigation