Skip to main content
Log in

Positron mobility in polyethylene in the 60–400 K temperature range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have determined the positron mobility (μ+) in polyethylene samples (67.2% crystalline, glass transition temperatureT g=151 K) in the 64–400 K temperature range by Doppler shift measurements. A method based on the simulataneous observation of two γ lines from133Ba and137Cs radioactive sources together with the positron annihilation γ line, was employed to measure the Doppler shift of the 511 keV γ line as a function of the electric field applied to the samples. With this method we were able to measure at the same time the drift velocity of positrons and theS parameter. This parameter is very important in the interpretation of the mobility trend in samples where the positron states change with temperature. The positron mobility was corrected for positronium formation. μ+ at 64 K is 31.7±0.8 cm2 V−1 s−1 then decreases up to 123 K, increases at 148 K and decreases again up to 170 K (μ+=26.9±0.8 cm2 Vs). This sharp change in mobility is centred around the glass transition temperature of our samples. Then the mobility remains almost constant up to 230 K. From 250 K to 377 K, μ+ increases and reaches the value of 38.4±1.0 cm2 V−1s−1. The corrected experimental data were well fitted by a simple model taking into account scattering and a thermally activated process (hopping mechanism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mc Mullen: InPositron Annihilation, ed. by P.C. Jain, R.M. Singru, K.P. Gopinathan, (World Scientific, Singapore 1985) p. 657

    Google Scholar 

  2. P.J. Shultz, K.G. Lynn: Rev. Mod. Phys.60, 701 (1986).

    Google Scholar 

  3. C.D. Beling, R.I. Simpson, M.G. Stewart, Y.Y. Wang, S. Fung, J.C. Wai, T.N. Sun. Phys. Status Solidi(a)102, 537 (1987)

    Google Scholar 

  4. E. Soininen, H. Huomo, P.A. Huttunen, J. Makinen, A. Vehanen, P. Hautojarvi: Phys. Rev. B41, 6227 (1990).

    Google Scholar 

  5. R.S. Brusa, A. Dupasquier, E. Galvanetto A. Zecca: Appl. Phys. A54, 233 (1992)

    Google Scholar 

  6. R. Pauling, R. Ripon, W. Brandt: Phys. Rev. Lett.31, 1214 (1973)

    Google Scholar 

  7. R.I. Simpson, M.G. Stewart, C.D. Beling M. Charlton: J. Phys. C1, 7251 (1989)

    Google Scholar 

  8. A.P. Mills, Jr., L. Pfeiffer, Phys. Rev. Lett.36, 1389 (1976)

    Google Scholar 

  9. I.K. Mackenzie, P.Z. Ghorayshi: Solid State Commun.55, 125 (1985)

    Google Scholar 

  10. A.P. Mills, Jr., E.M. Gullikson, L. Pfeiffer, W.S. Rockward: Phys. Rev. B33, 7799 (1986)

    Google Scholar 

  11. A.P. Mills, Jr., N. Karl, D.M. Zuckerman, J. Passner, J. Hensel, C.D. Beling, Appl. Phys. A54, 22 (1992)

    Google Scholar 

  12. A.P. Mills, Jr., G.R. Brandes, D.M. Zuckerman, W. Liu, S. Berko: Mater. Sci. Forum105-110, 763 (1992)

    Google Scholar 

  13. A.P. Mills, Jr. N. Karl: Phys. Rev. B48, 7050 (1993)

    Google Scholar 

  14. I.K. MacKenzie: InPositron Solid-State Physics, ed. by W. Brandt, A. Dupasquier (North-Holland, Amsterdam 1983) p. 235

    Google Scholar 

  15. R.S. Brusa, M. Duarte Naia, R. Grisenti, A. Zecca: Mater. Sci. Forum105-110, 1853 (1992)

    Google Scholar 

  16. W. Brandt, M. Maurino: Bull. Am. Phys. Soc.24, 72 (1979)

    Google Scholar 

  17. J.E. Ball, I.K. MacKenzie, R.J. Stone: InPositron Annihilation, ed. by L. Dorikens-Vanpraet, M. Dorikens, D. Segers (World Scientific, Singapore 1988) p. 857

    Google Scholar 

  18. W. Brandt, I. Spirn: Phys. Rev.142, 231 (1966)

    Google Scholar 

  19. A. Bisi, F. Bisi, A. Fasana, L. Zappa: Phys. Rev.122, 1709 (1961)

    Google Scholar 

  20. W. Brandt, J. Wilkenfeld: Phys. Rev. B12, 2579 (1975)

    Google Scholar 

  21. M. Bertolaccini, A. Bisi, G. Gambarini, G. Padovini, L. Zappa: Appl. Phys.12, 93 (1977)

    Google Scholar 

  22. A. Bisi, G. Gambarini, L. Zappa: Lett. Nuovo Cim.31, 58 (1981)

    Google Scholar 

  23. M. Rama Rao, A.P. Patro, P. Sen: Appl. Phys.22, 317 (1980)

    Google Scholar 

  24. F.J. Balta'Calleja, J. Serna, J. Vincente, A. Segovia: J. Appl. Phys.58, 252 (1985).

    Google Scholar 

  25. J.Ch. Abbe', G. Duplâtre, J. Serna: InPositron Annihilation, ed. by L. Dorikens-Vanpraet, M. Dorikens, D. Segers (World Scientific, Singapore 1988) p. 796

    Google Scholar 

  26. A. Zecca, R.S. Brusa, M. Duarte Naia: Meas. Sci. Technol.5, 61 (1994).

    Google Scholar 

  27. H. Jorch, J. Campbell: J. Nucl. Instrum. Methods143, 551 (1977)

    Google Scholar 

  28. B. Bergersen, E. Pajanne, P. Kubica, M.J. Stott, C.H. Hodges: Solid State Commun.15, 1377 (1974)

    Google Scholar 

  29. H.H. Jorch, K.G. Lynn, T. McMullen: Phys. Res. B30, 93 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brusa, R.S., Naia, M.D., Margoni, D. et al. Positron mobility in polyethylene in the 60–400 K temperature range. Appl. Phys. A 60, 447–453 (1995). https://doi.org/10.1007/BF01538768

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538768

PACS

Navigation