Skip to main content
Log in

Study of the influence of native oxide layers on atomic force microscopy imaging of semiconductor surfaces

  • Scanning Probe Methods in Materials Science. Part I
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated the influence of the native oxide layer on semiconductor surfaces on the imaging properties of the atomic force microscope operated under ambient conditions by using epitaxial In1−x Ga x As layers grown by Metal-Organic Chemical Vapour Deposition (MOCVD) on (001) oriented InP substrates which have been kept under ambient conditions for two years. The thickness and composition of the native oxide layers were studied with ellipsometry and X-ray photoelectron spectroscopy, respectively. Subsequently, the sample surfaces were imaged by means of atomic force microscopy operated in air which revealed terrace structures separated by monoatomic steps. The obtained data were compared with the surface morphology which can be expected from the MOCVD growth process. The results suggest that an accurate study of semiconductor layer growth by atomic force microscopy in air is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Hamers: In Scanning Tunneling Microscopy I, ed. by. H.J. Güntherodt, R. Wiesendanger, Springer Ser. Surf. Sci., Vol. 20, (Springer, Berlin, Heidelberg 1992) pp. 83–126

    Google Scholar 

  2. M. Tanimoto, T. Furuta, Y. Kuriyama: Jpn. J. Appl. Phys. 28, L290 (1989)

  3. G. Binnig, C.F. Quate, Ch. Gerber: Phys. Rev. Lett. 56, 930 (1986)

    Google Scholar 

  4. E. Meyer, H. Heinzelmann: In Scanning Tunneling Microscopy II, ed. by R. Wiesendanger, H.-J. Güntherodt, Springer Ser. Surf. Sci., Vol. 28, (Springer, Berlin, Heidelberg 1992) pp. 99–146

    Google Scholar 

  5. M. Kasu, T. Fukui: Jpn. J. Appl. Phys. 31, L864 (1992)

  6. Y.S. Fatt: J. Appl. Phys. 71, 158 (1992)

    Google Scholar 

  7. Y.S. Fatt: J. Vac. Sci. Technol. B 11, 562 (1993)

    Google Scholar 

  8. M.A. Cotta, L.R. Harriot, Y.L. Wang, R.A. Hamm, H.H. Wade, J.S. Weiner, D. Ritter, H. Temkin: Appl. Phys. Lett. 61, 1936 (1992)

    Google Scholar 

  9. M.A. Cotta, R.A. Hamm, T.W. Staley, R.D. Yadvish, L.R. Harriot, H. Temkin: Appl. Phys. Lett. 62, 496 (1993)

    Google Scholar 

  10. S. Howells, M.J. Gallagher, T. Chen, P. Pax, D. Sarid: Appl. Phys. Lett. 61, 801 (1992)

    Google Scholar 

  11. P. Moriarty, G. Hughes: Ultramicroscopy 42–44, 956 (1992)

    Google Scholar 

  12. M. Suzuki, Y. Homma, Y. Kudoh, N. Yabumoto: Jpn. J. Appl. Phys. 32, 1419 (1993)

    Google Scholar 

  13. J.P. Peyrade, F. Voillot, M. Goiran, H. Atmani, R. Rocher, E. Bedel: Appl. Phys. Lett. 60, 2481 (1992)

    Google Scholar 

  14. A. Bensaada, R.W. Cochrane, R.A. Masut, R. Leonelli, G. Kajrys: J. Cryst. Growth 130, 433 (1993)

    Google Scholar 

  15. F.G. Celli, L.A. Files-Sesler, E.A. Beam, III, H.-Y. Liu: J. Vac. Sci. Technol. A 11, 1796 (1993)

    Google Scholar 

  16. Y.-M. Xiong, P.G. Snyder: Thin Solid Films 220, 303 (1992)

    Google Scholar 

  17. I.-H. Tan, D.G. Lishan, R. Mirin, V. Jayaraman, T. Yasuda, C.B. Prater, E.L. Hu, J.E. Bowers, P.K. Hansma: J. Vac. Sci. Technol. B 9, 3498 (1991)

    Google Scholar 

  18. W. Denk, D.W. Pohl: Appl. Phys. Lett. 59, 2171 (1991)

    Google Scholar 

  19. M. Suzuki, Y. Homma, Y. Kudoh, R. Kaneko: Appl. Phys. Lett. 58, 2225 (1991)

    Google Scholar 

  20. M. Suzuki, Y. Homma, Y. Kudoh, R. Kaneko: Ultramicroscopy 42–44, 940 (1992)

    Google Scholar 

  21. J.E. Epler, T.A. Jung, H.P. Schweizer: Appl. Phys. Lett. 62, 143 (1993)

    Google Scholar 

  22. G.W. Smith, A.J. Pidduck, C.R. Whitehouse, J.L. Glasper, A.M. Keir, C. Pickering: Appl. Phys. Lett. 59, 3282 (1991)

    Google Scholar 

  23. C.C. Hsu, T.K.S. Wong, I.H. Wilson: Appl. Phys. Lett. 63, 1839 (1993)

    Google Scholar 

  24. T. Fukui, H. Saito: J. Vac. Sci. Technol. B 6, 1373 (1988)

    Google Scholar 

  25. B. Keller: Private communication

  26. D.E. Aspnes, A.A. Studna: Phys. Rev. B 27, 985 (1983)

    Google Scholar 

  27. K. Löschke, G. Kühn, H.-J. Bilz, G. Leonhardt: Thin Solid Films 48, 229 (1978)

    Google Scholar 

  28. I. Ohlídal, M. Líbezný: Surf. Interface Anal. 17, 171 (1991)

    Google Scholar 

  29. I.J. Ingrey, W.M. Lau, R.N.S. Sodhi: J. Vac. Sci. Technol. A 7, 1554 (1989)

    Google Scholar 

  30. D. Briggs, M.P. Seah: Practical Surface Analysis, Vol. 1, 2nd edn. (Wiley, Chichester 1990)

    Google Scholar 

  31. H.W. Dinges: J. Phys. 44, C10 (1983)

  32. F. Lukeš: Surf. Sci. 30, 91 (1972)

    Google Scholar 

  33. G. Wagner, V. Gottschalch, H. Rahn, P. Paufler: phys. stat. sol. (a) 112, 519 (1989)

    Google Scholar 

  34. G. Wagner, P. Paufler, G. Rohde: Z. Krist. 189, 269 (1989)

    Google Scholar 

  35. P. Paufler, G. Wagner: Z. Krist. 191, 265 (1990)

    Google Scholar 

  36. M.J. Maree, J.C. Barbour, J.F. van der Veen, K.L. Kavanagh, C.W.T. Bulle-Lieuwa, M.P.A. Viegers: J. Appl. Phys. 62, 4413 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluhm, H., Schwarz, U.D., Herrmann, F. et al. Study of the influence of native oxide layers on atomic force microscopy imaging of semiconductor surfaces. Appl. Phys. A 59, 23–27 (1994). https://doi.org/10.1007/BF00348415

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00348415

PACS

Navigation