Skip to main content
Log in

Influence of electrolytic hydrogen on the etch pit density of iron (110) surfaces

  • Contributed Papers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Etch pit densities on iron (110) surfaces in sulphuric acid grow linearly with the interfacial hydrogen activity in excess of a critical activity. The hydrogen activity is approximately proportional to the square root of the cathodic current density. At constant cathodic current density the etch pit density increases with temperature and decreases with external stress. Dislocations at which the excess etch pits form penetrate into the iron at a rate proportional to the hydrogen activity and the square root of time. Effects of prior hydrogen deposition on the shape of etch pits are seen at depths greater than the penetration depth of hydrogen generated dislocations. Changes of etch pit shape similar to those produced by hydrogen are also found when external stress is applied.

The results are compared to Prussin's theory in which the assumption is made that stresses accompanying diffusion of an impurity are fully relieved by plastic deformation and formation of dislocations for stresses exceeding a critical stress. While some of the predictions of the theory are met by the experiments, the dislocations penetrate into the iron much slower than diffusion of hydrogen, since dislocations cannot move fast enough, i.e. stresses are not fully relieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Queisser: Bull. Am. Phys. Soc.6, 106 (1961); J. Appl. Phys.31, 1776 (1961)

    Google Scholar 

  2. S. Prussin: J. Appl. Phys.32, 1876 (1961)

    Google Scholar 

  3. G.H. Schwuttke, H.J. Queisser: J. Appl. Phys.35, 1540 (1962)

    Google Scholar 

  4. J. Washburn, G. Thomas, H.J. Queisser: J. Appl. Phys.35, 1909 (1964)

    Google Scholar 

  5. S. Matsumoto, Y. Akao, K. Koshiyama, T. Niimi: J. Electrochem. Soc.125, 1840 (1978)

    Google Scholar 

  6. E. Levine, J. Washburn, G.T. Thomas: J. Appl. Phys.38, 81, 87 (1967)

    Google Scholar 

  7. T. Sakuma, S. Takada, T. Nishizawa: Scr. Metall11, 201 (1977)

    Google Scholar 

  8. T. Sakuma: Trans. Jpn. Inst. Met.22, 441 (1981)

    Google Scholar 

  9. T. Sakuma, S. Takada, M. Hasebe, T. Nishizawa: Trans. Jpn. Inst. Met.17, 637 (1976)

    Google Scholar 

  10. N. Ainslie, V. Phillips, D. Turnbull: Acta Metall.8, 528 (1960)

    Google Scholar 

  11. T. Sakuma, S. Takada, T. Nishizawa: Trans. Jpn. Inst. Met.19, 43 (1978)

    Google Scholar 

  12. S.D. Kapusta, T.T. Kam, K.E. Heusler: Z. Physik. Chem. (Frankfurt/Main)123, 219 (1980)

    Google Scholar 

  13. T.T. Kam: Dissertation, Clausthal (1982)

  14. W. Allgaier, K.E. Heusler: Z. Physik. Chem. (Frankfurt/Main)98, 161 (1975)

    Google Scholar 

  15. W. Allgaier, K.E. Heusler: Z. Metallkunde67, 766 (1976)

    Google Scholar 

  16. E.G. Dafft, K. Bohnenkamp, H.J. Engell: Corros. Sci.19, 591 (1979)

    Google Scholar 

  17. S.S. Chatterjee, T.T. Kam, K.E. Heusler: in preparation

  18. A. McNabb, P.K. Foster: Trans. Met. Soc. AIME227, 618 (1963)

    Google Scholar 

  19. H. Schmalzried, A. Navrotsky:Festkörperthermodynamik (Verlag Chemie, Weinheim 1975) p. 33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kam, T.T., Chatterjee, S.S. & Heusler, K.E. Influence of electrolytic hydrogen on the etch pit density of iron (110) surfaces. Appl. Phys. A 35, 219–226 (1984). https://doi.org/10.1007/BF00617171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00617171

PACS

Navigation