Skip to main content
Log in

Physical and gene mapping of chloroplast DNA from normal and cytoplasmic male sterile (radish cytoplasm) lines of Brassica napus

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Using the restriction endonucleases SaII, SmaI, BgII and KpnI, physical maps of chloroplast DNA isolated from normal and cytoplasmic male sterile (radish cytoplasm) lines of B. napus were constructed and compared. In this study, a rapid and simple procedure was developed for the isolation of chloroplast DNA restriction fragments from low gelling temperature agarose gels.

The overall structural organization of N and cms B. napus appears to be rather similar to that of cpDNAs of other higher plants. It is composed of two identical sequences (each about 15 Md) arranged as an inverted repeat separated by two single copy-regions of different sizes (about 54 and 15 Md). In both genomes the ribosomal RNAs are encoded by duplicate genes situated at one end of the inverted repeat. The two chloroplast genomes are distinguished by a point mutation in the rRNA locus. Genes for the large subunit of ribulose-1.5-biphosphate carboxylase and a 32 kilodalton photosystem II polypeptide are separated by a minimum of 30 Md of DNA within the large single copy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cpDNA:

chloroplast DNA

N cpDNA:

chloroplast DNA from normal lines

cms cpDNA:

chloroplast DNA from cytoplasmic male sterile lines

Md:

megadalton

EEO:

electroendosmosis

LGT agarose:

low gelling temperature agarose

rRNA:

ribosomal RNA

LS:

large subunit of ribulose-1,5 biphosphate carboxylase

PII:

32,000 daltons photosystem II polypeptide

References

  1. Bannerot H, Boulidard L, Cauderon Y, Tempé T (1974) Proc Eucarpia Meeting Crucifera, Crop Sect 25:52–54

    Google Scholar 

  2. Bedbrook JR, Bogorad L (1976) Proc Natl Acad Sci USA 73:4309–4313

    Google Scholar 

  3. Bedbrook JR, Kolodner R, Bogorad L (1977) Cell 11:739–749

    Google Scholar 

  4. Belliard G, Vedel F, Pelletier G (1979) Nature 281:401–403

    Google Scholar 

  5. Bovenberg WA, Kool AJ, Nijkamp HJJ (1981) Nucleic Acids Res 9:503–517

    Google Scholar 

  6. Bowman CM, Koller B, Delius H, Dyer TA (1981) Mol Gen Genet 183:93–101

    Google Scholar 

  7. Chu NM, Oishi KK, Tewari KK (1981) Plasmid 6:279–292

    Google Scholar 

  8. Danna KJ (1980) Meth Enzymol 65:449–467

    Google Scholar 

  9. Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979) Gene 6:285–306

    Google Scholar 

  10. Driesel AJ, Speirs J, Bohnert HJ (1980) Biochim Biophys Acta 610:297–310

    Google Scholar 

  11. Fluhr R, Edelman M (1981) Mol Gen Genet 181:484–490

    Google Scholar 

  12. Forde BG, Oliver RJC, Leaver CJ, Gunn RE, Kemble RJ (1980) Genetics 95:443–450

    Google Scholar 

  13. Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1981) Theor Appl Genet 59:281–296

    Google Scholar 

  14. Gray PW, Hallick RB (1978) Biochemistry 17:284–289

    Google Scholar 

  15. Greene PJ, Heynecker HL, Bolivar F, Rodriguez RL, Betlach MC, Covarrubias AA, Backman K, Russel DJ, Tait R, Boyer HW (1978) Nucleic Acids Res 5:2373–2380

    Google Scholar 

  16. Herrmann RG, Bohnert HJ, Kowallik KV, Schmitt JM (1975) Biochim Biophys Acta 378:305–317

    Google Scholar 

  17. Herrmann RG, Whitfeld PR, Bottomley W (1980) Gene 8:179–191

    Google Scholar 

  18. Jurgenson JE, Bourque DP (1980) Nucleic Acids Res 8:3505–3516

    Google Scholar 

  19. Kemble RJ, Bedbrook JR (1980) Nature 284:565–566

    Google Scholar 

  20. Koller B, Delius H (1980) Mol Gen Genet 178:261–269

    Google Scholar 

  21. Link G, Chambers SE, Thompson JA, Falk H (1981) Mol Gen Genet 181:454–457

    Google Scholar 

  22. Palmer JD, Thompson WF (1981) Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  23. Palmer JD (1982) Nucleic Acids Res 10:1593–1605

    Google Scholar 

  24. Palmer JD, Thompson WF (1982) Cell 29:537–550

    Google Scholar 

  25. Pring DR, Levings CS (1978) Genetics 89:121–136

    Google Scholar 

  26. Quétier F, Vedel F (1977) Nature 268:365–368

    Google Scholar 

  27. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251.

    Google Scholar 

  28. Rochaix JD (1978) J Mol Biol 126:597–617

    Google Scholar 

  29. Seyer P, Kowallik KV, Herrmann RG (1981) Curr Genet 3:189–204

    Google Scholar 

  30. Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  31. Thuring RWJ, Sanders JPM, Borst P (1975) Anal Biochem 66:213–220

    Google Scholar 

  32. Van Ee JH, Vos YJ, Planta RJ (1980) Gene 12:191–200

    Google Scholar 

  33. Vedel F, Lebacq P, Quétier F (1980) Theor Appl Genet 58:219–224

    Google Scholar 

  34. Vedel F, Mathieu C, Lebacq P, Ambard-Bretteville F, Rémy R, Pelletier G, Renard M, Rousselle P (1982) Theor Appl Genet 62:255–262

    Google Scholar 

  35. Wahl GM, Stern M, Stark GR (1979) Proc Natl Acad Sci USA 76:3683–3687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedel, F., Mathieu, C. Physical and gene mapping of chloroplast DNA from normal and cytoplasmic male sterile (radish cytoplasm) lines of Brassica napus . Current Genetics 7, 13–20 (1983). https://doi.org/10.1007/BF00365675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365675

Key words

Navigation