Skip to main content
Log in

Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Spontaneous mitotic intragenic and intergenic recombination at various sites is enhanced 10 to 100 fold in the methyl methanesulfonate (MMS)-sensitive mutants mms9-1, mms13-1, and mms21-1 of Saccharomyces cerevisiae. All three mutants show elevated rates of spontaneous mutation. Sporulation is reduced in diploids homozygous for any of the three mutations, and a deficiency in meiotic recombination and meiotic chromosome segregation is observed. Pleiotropic effects on cell viability, growth rate, and radiation sensitivity, in combination with the alterations in recombination and mutagenesis displayed by mutant strains, suggest that the MMS9, MMS13, and MMS21 genes play important roles in DNA replication and/or genetic recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boram WR, Roman H (1976) Proc Natl Acad Sci USA 73:2828–2832

    Google Scholar 

  • Cox BS, Game JC (1974) Mutat Res 26:257–264

    Google Scholar 

  • Esposito MS (1978) Proc Natl Acad Sci USA 75:4436–4440

    Google Scholar 

  • Esposito MS, Esposito RE (1974) Genetics 78:215–225

    Google Scholar 

  • Esposito MS, Esposito RE, Arnaud M, Halvorson HO (1970) J Bacteriol 104:202–210

    Google Scholar 

  • Esposito RE, Esposito MS (1974) Proc Natl Acad Sci USA 71:3172–3176

    Google Scholar 

  • Fabre F (1978) Nature 272:795–798

    Google Scholar 

  • Fogel S, Hurst DD (1963) Genetics 48:321–328

    Google Scholar 

  • Game JC, Johnston LH, Borstel RC von (1979) Proc Natl Acad Sci USA 76:4589–4592

    Google Scholar 

  • Game JC, Zamb TJ, Braun RJ, Resnick M, Roth RM (1980) Genetics 94:51–68

    Google Scholar 

  • Glickman BW, Radman M (1980) Proc Natl Acad Sci USA 77:1063–1067

    Google Scholar 

  • Golin JE, Esposito MS (1977) Mol Gen Genet 150:127–135

    Google Scholar 

  • Gottesman MM, Hicks ML, Gellert M (1972) J Mol Biol 77:531–547

    Google Scholar 

  • Hall RM, Brammar WJ (1973) Mol Gen Genet 121:271–276

    Google Scholar 

  • Hastings PJ, Quah SK, von Borstel RC (1976) Nature 264:719–722

    Google Scholar 

  • Hurst DD, Fogel S (1964) Genetics 50:435–458

    Google Scholar 

  • Hurst DD, Fogel S, Mortimer RK (1972) Proc Natl Acad Sci USA 69:101–105

    Google Scholar 

  • Jackson JA, Fink GR (1981) Nature 292:306–311

    Google Scholar 

  • Johnston LH, Nasmyth KA (1978) Nature 274:891–893

    Google Scholar 

  • Konrad EB (1977) J Bacteriol 130:167–172

    Google Scholar 

  • Konrad EB, Lehman IR (1974) Proc Natl Acad Sci USA 71:2048–2051

    Google Scholar 

  • Konrad EB, Modrich P, Lehman IR (1973) J Mol Biol 77:519–529

    Google Scholar 

  • Malone RE, Esposito RE (1980) Proc Natl Acad Sci USA 77:503–507

    Google Scholar 

  • Malone RE, Esposito RE (1981) Mol Cell Biol 1:891–901

    Google Scholar 

  • Malone RE, Golin JE, Esposito MS (1980) Curr Genet 1:241–248

    Google Scholar 

  • Maloney DH, Fogel S (1980) Genetics 94:825–839

    Google Scholar 

  • McCusker JH, Haber JE (1977) J Bacteriol 132:180–185

    Google Scholar 

  • Minet M, Grossenbacher-Grunder AM, Thuriaux P (1980) Curr Genet 2:53–60

    Google Scholar 

  • Montelone BA, Prakash S, Prakash L (1981) J Bacteriol 147:517–525

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1966) Genetics 53:165–173

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1973) Genetics 74:33–54

    Google Scholar 

  • Perkins DD (1949) Genetics 34:607–626

    Google Scholar 

  • Prakash L, Prakash S (1977) Genetics 86:33–55

    Google Scholar 

  • Prakash L, Taillon-Miller P (1981) Curr Genet 3:247–250

    Google Scholar 

  • Prakash S, Prakash L (1977) Genetics 87:229–236

    Google Scholar 

  • Prakash S, Prakash L, Burke W, Montelone BA (1980) Genetics 94:31–50

    Google Scholar 

  • Quah SK, von Borstel RC, Hastings PJ (1980) Genetics 96:819–839

    Google Scholar 

  • Roman H (1956) Cold Spring Harbor Symp Quant Biol 21:175–185

    Google Scholar 

  • Roman H (1971) Induced recombination in mitotic diploid cells of Saccharomyces. In: Bogart R (ed) Genetic lectures, vol. 2. Oregon State University Press, Corvallis, pp 43–59

    Google Scholar 

  • Roman H, Jacob F (1958) Cold Spring Harbor Symp Quant Biol 23:155–160

    Google Scholar 

  • Sevastopolous CG, Glaser DA (1977) Proc Natl Acad Sci USA 74:3947–3950

    Google Scholar 

  • Sherman F, Roman H (1963) Genetics 48:255–261

    Google Scholar 

  • Sherman F, Slonimski PP (1964) Biochim Biophys Acta 90:1–15

    Google Scholar 

  • Sherman F, Stewart JW, Helms C, Downie A (1978) Proc Natl Acad Sci USA 75:1437–1441

    Google Scholar 

  • Silva-Lopez E, Zamb TJ, Roth R (1975) Nature 253:212–214

    Google Scholar 

  • Tye BK, Nyman P-0, Lehman IR, Hochhauser S, Weiss B (1977) Proc Natl Acad Sci USA 74:154–157

    Google Scholar 

  • Vaccaro KK, Siegel EC (1975) Mol Gen Genet 141:251–262

    Google Scholar 

  • von Borstel RC, Cain KT, Steinberg CM (1971) Genetics 69:17–27

    Google Scholar 

  • Wildenberg J (1970) Genetics 66:291–304

    Google Scholar 

  • Zamb TJ, Petes TD (1981) Curr Genet 3:125–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montelone, B.A., Prakash, S. & Prakash, L. Hyper-recombination and mutator effects of the mms9-1, mms13-1, and mms21-1 mutations in Saccharomyces cerevisiae . Curr Genet 4, 223–232 (1981). https://doi.org/10.1007/BF00420503

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420503

Key words

Navigation