Skip to main content
Log in

The 5′-upstream region of the yeast 25S rRNA gene contains a promoter element allowing expression in yeast and E. coli

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The 25S rRNA gene of Saccharomyces cerevisiae is preceded by a bona fide TATA sequence which allows the initiation of transcription — presumably by polymerase II — from the same strand as the 25S rRNA gene. When the promoter fragment is cloned in front of a lacZ gene equipped with an initiation codon but lacking a promoter, this element permits formation of β-galactosidase both in yeast and E. coli.

Using RNA from yeast transformed with the fusion plasmid, we mapped by primer elongation a single initiation site 63 by downstream from the presumed TATA sequence, i.e. about 53 by 5′ of, the 25S rRNA gene. A similar signal at about the same position was observed when RNA from untransformed wild-type yeast was used as a template for primer elongation. These results suggest that transcription from this polymerase II promoter-like element occurs in vivo. A regulatory function could not be assigned to this transcript. Its initiation is not significantly influenced by heme or carbon source, although two boxes of high homology with upstream activation sequences (UAS) mediating heme dependent expression of the iso-1-cytochrome c gene (CYC1) precede the promoter at the appropriate distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach M-L, Lacroute F, Botstein D (1979) Proc Natl Acad Sci USA 76:386–390

    Google Scholar 

  • Bayev AA, Georgiev OJ, Hadjiolov AA, Nikolaev N, Skryabin KG, Zakharyev VM (1981) Nucleic Acids Res 4:789–799

    Google Scholar 

  • Beaucage SL, Caruthers MH (1981) Tetrahedron Lett 22:1859–1862

    Google Scholar 

  • Bläsi U, Linke RP, Harkness RE, Modrow S, Lubitz W (1988) J Bacteriol (in press)

  • Butow RA, Docherty R, Parikh VS (1988) Philos Trans R Soc London Ser B (in press)

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) Methods Enzymol 100:293–308

    Google Scholar 

  • Chen E, Seeburg PH (1985) DNA 4:165–170

    Google Scholar 

  • Dobson MJ, Tuite MF, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res 10:2625–2637

    Google Scholar 

  • Dumont ME, Ernst JF, Hampsey DM, Sherman F (1987) EMBO J 6:235–241

    Google Scholar 

  • Elion EA, Warner JR (1984) Cell 39:663–673

    Google Scholar 

  • Guarente L (1987) Annu Rev Genet 21:425–452

    Google Scholar 

  • Guarente L, Mason T (1983) Cell 32:1279–1286

    Google Scholar 

  • Guarente L, Ptashne M (1981) Proc Natl Acad Sci USA 78:2199–2203

    Google Scholar 

  • Guarente L, Lalonde B, Gifford P, Alani E (1984) Cell 36:503–511

    Google Scholar 

  • Guiard B (1985) EMBO J 4:3265–3272

    Google Scholar 

  • Hawley DK, McClure WR (1983) Nucleic Acids Res 11:2237–2255

    Google Scholar 

  • Hayashi MN, Fujimura FK, Hayashi M (1976) Proc Natl Acad Sci USA 73:3519–3523

    Google Scholar 

  • Hayashi MN, Hayashi M, Müller UR (1983) J Virol 48:186–196

    Google Scholar 

  • Kief DR, Warner JR (1982) Mol Cell Biol 1:1007–1015

    Google Scholar 

  • Lang B, Burger G, Doxiadis J, Thomas DY, Bandlow W, Kaudewitz F (1977) Anal Biochem 77:110–121

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1985) Curr Genet 9:273–277

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Marres CAM, van Loon APGM, Oudshoorn P, van Steeg H, Grivell LA, Slater EC (1985) Eur J Biochem 147:153–161

    Google Scholar 

  • Miller JH (1972) In: Miller JH (ed) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 352–355

    Google Scholar 

  • Montgomery DL, Hall BD (1978) Cell 14:673–680

    Google Scholar 

  • Müller G, Bandlow W (1987) Z Naturforsch 42c:1291–1302

    Google Scholar 

  • Musso R, DiLauro R, Rosenberg M, DeCrombrugghe B (1977) Proc Natl Acad Sci USA 74:106–110

    Google Scholar 

  • Nasmyth KA, Reed SJ (1980) Proc Natl Acad Sci USA 77:2119–2123

    Google Scholar 

  • Ng R, Abelson J (1980) Proc Natl Acad Sci USA 77:3912–3916

    Google Scholar 

  • Parikh VS, Clements LS, Scott RM, Morgan MM, Butow RA (1986) Yeast 2:285

    Google Scholar 

  • Parikh VS, Morgan MM, Scott RM, Clements LS, Butow RA (1987) Science 235:576–580

    Google Scholar 

  • Ratkin B, Carbon J (1977) Proc Natl Acad Sci USA 74:487–491

    Google Scholar 

  • Schmalix W, Oechsner U, Magdolen V, Bandlow W (1986) HoppeSeylers 2 Physiol 367:379–385

    Google Scholar 

  • Schweizer E, MacKechnie C, Halvorson HO (1969) J Mol Biol 40:261–277

    Google Scholar 

  • Sledziewski A, Rytka J, Bilinski T, Hörtner H, Ruis H (1981) Curr Genet 4:19–23

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Spevak W, Hartig A, Meindl P, Ruis H (1986) Mol Gen Genet 203:73–78

    Google Scholar 

  • Struhl K (1986) J Mol Biol 191:221–229

    Google Scholar 

  • Struhl K (1987) Cell 49:295–297

    Google Scholar 

  • Struhl K, Davis RS (1977) Proc Natl Acad Sci USA 74:5255–5259

    Google Scholar 

  • Struhl K, Cameron JR, Davis RW (1976) Proc Natl Acad Sci USA 73:1471–1475

    Google Scholar 

  • Teem JL, Abovich N, Kaufer NF, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) Nucleic Acids Res 12:8295–8313

    Google Scholar 

  • Thomas PS (1983) Methods Enzymol 100:255–266

    Google Scholar 

  • van Loon APGM, de Groot RJ, van Eyk E, van der Horst GTJ, Grivell LA (1982) Gene 20:323–337

    Google Scholar 

  • Veldman GM, Klootwijk J, van Heerikhuizen H, Planta RJ (1981) Nucleic Acids Res 9:4847–4862

    Google Scholar 

  • Waldron C, Lacroute F (1975) J Bacteriol 122:855–865

    Google Scholar 

  • Warner JR (1982) In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 529–560

    Google Scholar 

  • Wehr CT, Parks LW (1969) J Bacteriol 98:458–466

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strobel, G., Magdolen, V., Oechsner, U. et al. The 5′-upstream region of the yeast 25S rRNA gene contains a promoter element allowing expression in yeast and E. coli . Curr Genet 14, 293–302 (1988). https://doi.org/10.1007/BF00419985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419985

Key words

Navigation