Skip to main content
Log in

Distance conserving reductions for nonoriented networks

  • Theoretical Papers
  • Published:
Operations-Research-Spektrum Aims and scope Submit manuscript

Summary

We describe a procedure for reducing the number of edges of a given nonoriented network in such a way, that the shortest distances between the original vertices are conserved. It is based on the triangle condition and on generating additional vertices. For a network optimization problem, such as the travelling salesman problem, the procedure achieves an essential reduction of the number of variables and of the solution effort. The computational results show that the reduced number of edges depends about linearly on the number of vertices.

Zusammenfassung

Es wird ein Verfahren beschrieben, das die Anzahl der Kanten eines gegebenen ungerichteten Netzwerkes in der Weise verringert, daß die kürzesten Entfernungen zwischen den ursprünglichen Knoten erhalten bleiben. Es beruht auf der Anwendung der Dreiecksungleichung und der Erzeugung zusätzlicher Knoten. Das Verfahren bewirkt für Netzwerk-Optimierungsprobleme, etwa für das Rundreiseproblem, eine wesentliche Reduzierung der Anzahl der Variablen und des Lösungsaufwands. Die Rechenergebnisse zeigen, daß die reduzierte Anzahl der Kanten etwa linear von der Anzahl der Knoten des Netzwerks abhängt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christofides N (1975) Graph theory, an algorithmic approach. Academic Press, London, New York

    Google Scholar 

  2. Dantzig G, Fulkerson DR, Johnson S (1954) Solution of a large scale travelling salesman problem. Oper Res 2:393–410

    Google Scholar 

  3. Fleischmann B (1982) Linear programming approaches to travelling salesman and vehicle scheduling problems. Paper presented at the XI International Symposium on Mathematical Programming, Bonn

  4. Grötschel M (1977) Polyhedrische Characterisierungen kombinatorischer Optimierungsprobleme. Verlag A Hain, Meisenheim

    Google Scholar 

  5. Grötschel M (1980) On the symmetric travelling salesman problem: Solution of a 120-city problem. Math Progr Studies 12:61–77

    Article  Google Scholar 

  6. Hakimi SL, Yau SS (1965) Distance matrix of a graph and its realizibility. Qu Appl Math 22:305–317

    Article  Google Scholar 

  7. Held M, Karp RM (1962) A dynamic programming approach to sequencing problems. J SIAM 10:196–210

    Google Scholar 

  8. Karg LL, Thompson GL (1964) A heuristic approach to solving travelling salesman problems. Manag Sci 10:225–248

    Article  Google Scholar 

  9. Laporte G, Miliotis P, Nobert Y (1981) Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph. RAIRO 15:233–239

    Article  Google Scholar 

  10. Miliotis P (1978) Using cutting planes to solve the symmetric travelling salesman problem. Math Progr 15:177–188

    Article  Google Scholar 

  11. Murchland JD (1970) A fixed matrix method for all shortest distances in a directed graph and for the inverse problem. PhD Dissertation, Karlsruhe

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischmann, B. Distance conserving reductions for nonoriented networks. OR Spektrum 5, 195–205 (1983). https://doi.org/10.1007/BF01719842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01719842

Keywords

Navigation