Skip to main content
Log in

The behavior of the tracer diffusion coefficient of polystyrene in isorefractive “solvents” composed of poly(vinyl methyl ether) ando-Fluorotoluene

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

In this paper, we describe and use a relatively new technique — dynamic light scattering from refractive index-matched ternary solutions-to study a quantity very closely related to the self-diffusion coefficient in binary systems. We refer to this quantity as the tracer diffusion coefficient. This tracer diffusion coefficient is expected to behave in much the same way as the self-diffusion coefficient, in terms of its concentration and molecular weight dependencies. In this study, we use two compatible polymers, polystyrene and poly(vinyl methyl ether), and a solvent, o-fluorotoluene, chosen specifically because its refractive index matches that of the poly(vinyl methyl ether). The technique is advantageous in that it allows the experimenter to vary independently the molecular weight of both the probe and “invisible” matrix polymers, their individual molecular topologies, and the overall polymer concentration with relative ease. No special chemical tagging is required, although it must be borne in mind that we are not measuring self-diffusion but the diffusion of a dissimilar tracer. Our experiments probe the diffusion of linear polystyrenes in matrices composed of linear poly(vinyl methyl ether)/o-fluorotoluene. Our results show a crossover from non-free draining (Zimm) to free draining (Rouse) hydrodynamic behavior of polystyrene as the concentration of the invisible poly(vinyl methyl ether) making up the matrix is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hanley, S. Balloge, and M. Tirrell, Chem. Eng. Commun.24, 93 (1983).

    CAS  Google Scholar 

  2. T. Lodge, Macromolecules16, 1393 (1983).

    Article  CAS  Google Scholar 

  3. J. Martin, Macromolecules17, 1279 (1984).

    Article  CAS  Google Scholar 

  4. D.W. van Krevelin and P.J. Hoftyzer, “Properties of Polymers” Elsevier Amsterdam, Oxford, New York, 338 (1976).

    Google Scholar 

  5. S. Balloge and M. Tirrell, Macromolecules18, 817 (1985).

    Article  CAS  Google Scholar 

  6. H. Hervet, L. Léger, and F. Rondelez, Phys. Rev. Lett.42, 168 (1979).

    Article  Google Scholar 

  7. L. Léger, H. Hervet, and F. Rondelez, Macromolecules14, 1732 (1981).

    Article  Google Scholar 

  8. P.T. Callaghan and D.T. Pinder, Macromolecules14, 1334 (1981).

    Article  CAS  Google Scholar 

  9. N. Nemoto, M.R. Landry, I. Noh, T. Kitano, J.A. Wesson, and H. Yu, Macromolecules 17,(1984).

  10. M. Tirrell, Rubber Chem. and Tech.57, 523 (1984).

    CAS  Google Scholar 

  11. J.G. Kirkwood and J. Riseman, J. Chem. Phys.16, 565 (1948).

    Article  CAS  Google Scholar 

  12. R.B. DeMallie, M.H. Birnboim, J.E. Frederick, N.W. Tschoegl, and J.D. Ferry, J. Phys. Chem.66, 536 (1962).

    CAS  Google Scholar 

  13. J.E. Frederick, N.W. Tschoegl, and J.D. Ferry, J. Phys. Chem.68, 1974 (1964).

    CAS  Google Scholar 

  14. L.A. Holmes and J.D. Ferry, J. Polym. Sci.C23, 291 (1968).

    Google Scholar 

  15. M. Daoud and P.G. deGennes, J. Polym. Sci. — Phys.17, 1971 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanley, B., Tirrell, M. & Lodge, T. The behavior of the tracer diffusion coefficient of polystyrene in isorefractive “solvents” composed of poly(vinyl methyl ether) ando-Fluorotoluene. Polymer Bulletin 14, 137–142 (1985). https://doi.org/10.1007/BF00708471

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708471

Keywords

Navigation