Skip to main content
Log in

On density and extinction in continuous population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Survival analyses, investigations of extinction and persistence, are executed for populations represented by a nonautonomous differential equation model. The population is assumed governed by density dependent and time varying density independent demographic parameters. While traditional approaches to extinction postulate extinction on an infinite time horizon and at zero abundance level, survival analysis is developed not only for this traditional setting but also on a finite time horizon and at a nonzero threshold level. A main conclusion is that extinction of a temporally stressed population is determined by a totality of density independent and density dependent factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clark, C. W.: Mathematical bioeconomics. New York: Wiley 1976

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Mathematical analysis of some three-species food-chain models. Math. Biosci. 33, 257–276 (1977)

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73, 89–101 (1985)

    Google Scholar 

  • Gard, T. C.: Persistence in food webs. In: Levin, S. A., Hallam, T. G. (eds.) Mathematical ecology (Proceedings, Trieste 1982, pp. 208–219) Lecture Notes in Biomathematics, Vol. 54. Berlin Heidelberg New York Tokyo: Springer 1984

    Google Scholar 

  • Gard, T. C., Hallam, T. G.: Persistence in food webs: I. Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    Google Scholar 

  • Gause, G. F.: The struggle for existence. New York: Hafner Press 1934 (Reprinted in 1964)

    Google Scholar 

  • Goh, B. S.: Nonvulnerability of ecosystems in unpredictable environments. Theor. Popul. Biol. 10, 83–95 (1976).

    Google Scholar 

  • Hallam, T. G.: Population dynamics in a homogeneous environment. In: Hallam, T. G., Levin, S. A. (eds.) Mathematical ecology: An introduction. Berlin Heidelberg New York Tokyo: Springer 1986

    Google Scholar 

  • Hallam, T. G., Clark, C. E., Jordan, G. S.: Effects of toxicants on populations: A qualitative approach II. First order kinetics. J. Math. Biol. 18, 25–37 (1983)

    Google Scholar 

  • Hallam, T. G., deLuna, J. T.: Effects of toxicants on populations: A qualitative approach III. Environmental and food chain pathways. J. Theor. Biol. 109, 411–429 (1984)

    Google Scholar 

  • Hallam, T. G., Ma Zhien: Persistence in population models with demographic fluctuations. J. Math. Biol. 24, 327–339 (1986)

    Google Scholar 

  • Malthus, T. R.: An essay on the principle of population as it affects the future improvement of society, with remarks on the speculations of Mr. Godwin, M. Condorcet, and other writers. London: J. Johnson 1798

    Google Scholar 

  • Lakshmikanthan, V., Leela, S.: Differential and integral inequalities. New York: Academic Press 1969

    Google Scholar 

  • Levin, S. A.: Ecosystem analysis and prediction. Philadelphia: SIAM, 1975

    Google Scholar 

  • May, R. M.: Theoretical ecology: Principles and applications. In: May, R. M. (ed.) Philadelphia: Saunders 1976

    Google Scholar 

  • Roughgarden, J.: Theory of population genetics and evolutionary ecology: An introduction. New York: Macmillan 1977

    Google Scholar 

  • Smith, F. E.: Population dynamics in Daphnia magna and a new model for population growth. Ecology 44, 651–663 (1963)

    Google Scholar 

  • Steele, H. J.: The structure of marine ecosystems. Cambridge: Harvard 1974

    Google Scholar 

  • Verhulst, P. F.: Notice sur la loi que la population suit dans son accroissement. Correspondences Mathematiques et Physiques 10, 113–121 (1838)

    Google Scholar 

  • Verhulst, P. F.: Deuxieme mémoire sur la loi d'accroissement de la population. Mem. Acad. Roy. Belg. 20, (no. 3), 1–32 (1847)

    Google Scholar 

  • Weiss, L., Infante, E. F.: On the stability of systems defined over a finite time interval. Proc. Nat. Acad. Sci. USA 54, 44–48 (1965)

    Google Scholar 

  • Wiegert, R. C.: Mathematical representation of ecological interactions. In: Levin, S. A. (ed.) Ecosystem analysis and prediction, pp. 43–54. Philadelphia: SIAM-SIMS 1975

    Google Scholar 

  • Woodwell, G. M.: The threshold problem in ecosystems. In: Levin, S. A. (ed.) Ecosystem analysis and prediction, pp. 9–21. Philadelphia: SIAM-SIMS 1975

    Google Scholar 

  • Wu, L. S. Y.: On the stability of ecosystems. In: Levin, S. A. (ed.) Ecosystem analysis and prediction, pp. 155–165. Philadelphia: SIAM 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallam, T.G., Zhien, M. On density and extinction in continuous population models. J. Math. Biology 25, 191–201 (1987). https://doi.org/10.1007/BF00276389

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276389

Key words

Navigation