Skip to main content
Log in

Elasticity of the olivine and spinel polymorphs of Ni2SiO4

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The single-crystal elastic moduli, c ij x, of the olivine (α) and spinel (γ) polymorphs of nickel orthosilicate have been measured at atmospheric pressure and 20° C by Brillouin spectroscopy. The results are (Mbar), Ni2SiO4 olivine: c 11=3.40(2), c 22=2.38(2), c 33=2.53(2), c 44=0.71(1), c 55=0.87(1), c 66=0.78(1), c 12=1.09(2), c 13=1.10(4), c 23=1.13(3), Ni2SiO4 spinel: c 11=3.66(3), c 44=1.06(1), c 12=1.55(3). In comparing these results with extant elasticity data for olivine- and spinel-type compounds we find distinctive elastic characteristics related to crystal structure, and systematic trends due only to compositional variation. For silicate olivines, the longitudinal moduli decrease in the order c 11>c 33>c 22, regardless of composition. The moduli c 55 and c 66 are approximately equal, and greater than c 44. The former relationship is related to differences in polyhedral linkages along the crystallographic axes, whereas the latter may result from rotational freedom of SiO4 tetrahedra in response to different directions of shear. Composition affects elasticity most directly through the relative magnitudes of \(\bar c_{12} > \; = (c_{12} + c_{13} + c_{23} )/3\) and \(\bar c_{44} = (c_{44} + c_{55} + c_{66} )/3\). When transition-metal cations are six-coordinated by oxygen \(\bar c_{12} > \bar c_{44}\), and when alkaline-earth cations are six-coordinated \(\bar c_{44} > \bar c_{12}\).

The longitudinal moduli along and normal to the close-packed directions of spinels are similar, reflecting the framework-like arrangement of octahedra. These longitudinal moduli exhibit little compositional dependence upon tetrahedral cations but vary dramatically with octahedral substitution. Our data indicate that tetrahedral cations affect elastic properties more as the oxygen positional parameter, u, decreases. The u parameter is also directly related to elastic anisotropy. While γ-Ni2SiO4 (u=0.244) is elastically isotropic, anisotropy increases rapidly as u approaches a limiting value near 0.27, and may be related to mechanical stability of the spinel structure. The longitudinal wave velocities along close-packed directions in α and γ Ni2SiO4 are equal. Thus, for an α-γ polymorphic pair, the assumptions of elastic isotropy of the γ phase and equal velocities in close-packed directions of α and γ allows the c ij's and shear modulus of a spinel-structure silicate to be estimated from c 11 of the corresponding α phase and the bulk modulus of the γ phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto S (1972) The system MgO-FeO-SiO2 at high pressures and temperatures — phase equilibria and elastic properties. In: Ritsema AR (ed), The Upper Mantle, Tectonophysics, 13 (1–4):161–187

    Google Scholar 

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides1,2. J Geophys Res 75:3494–3500

    Google Scholar 

  • Bass JD, Weidner DJ (1984) Elasticity of single-crystal orthoferrosilite. J Geophys Res (in press)

  • Chang ZP, Barsch GR (1973) Pressure dependence of single-crystal elastic constants and anharmonic properties of spinel. J Geophys Res 78:2418–2433

    Google Scholar 

  • Chung DH (1971) Elasticity and equations of state of olivines in the Mg2SiO4-Fe2SiO4 system. Geophys J R astr Soc 25:511–538

    Google Scholar 

  • England AW (1970) Equations of state of oxides and silicates and new data on the elastic properties of spinel, magnetite, and cadmium oxide, Ph.D. thesis, pp 159, Mass Inst of Technol, Cambridge, Mass

    Google Scholar 

  • Finger LW, Hazen RM, Yagi T (1979) Crystal structures and electron densities of nickel and iron silicate spinels at elevated temperature or pressure. Am Mineral 64:1002–1009

    Google Scholar 

  • Fukizawa A, Kinoshita H (1982) Shear wave velocity jump at the olivine-spinel transformation in Fe2SiO4 by ultrasonic measurements in situ. J Phys Earth 30:245–253

    Google Scholar 

  • Graham EK, Barsch GR (1969) Elastic constants of single-crystal forsterite as function of temperature and pressure. J Geophys Res 74:5949–5960

    Google Scholar 

  • Graham EK, Sopkin SM, Resley WE (1982) Elastic properties of fayalite, Fe2SiO4, and the olivine solid solution series (Abstract). EOS, Trans Am Geophys Union 63:1090

    Google Scholar 

  • Hamaya N, Akimoto S (1982) Experimental investigation on the mechanism of olivine-spinel transformation: growth of single crystal spinel from single crystal olivine in Ni2SiO4. In: Akimoto S, Manghnani MH (eds), High Pressure Research in Geophysics. Center Acad Publication Japan, Tokyo

    Google Scholar 

  • Haussühl S (1967) Die Abweichungen von den Cauchy-Relationen. Phys kondens Materie 6:181–192

    Google Scholar 

  • Hazen RM (1976) Effects of temperature and pressure on the crystal structure of forsterite. Am Mineral 61:1280–1293

    Google Scholar 

  • Hazen RM, Finger LW (1979) Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res 84:6723–6728

    Google Scholar 

  • Hazen RM, Finger LW (1980) Crystal structure of forsterite at 40 kbar. Carnegie Inst Washington Yearb 79:364–367

    Google Scholar 

  • Hazen RM, Prewitt CT (1977) Effects of high pressure on interatomic distances in oxygen-based minerals. Am Mineral 309–315

  • Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Phys Chem Minerals 4:317–339

    Google Scholar 

  • Jagodzinski H, Saalfeld H (1958) Kationenverteilung und Strukturbeziehungen in Mg-Al-Spinellen. Z Kristallogr 110:197–218

    Google Scholar 

  • Kamb B (1968) Structural basis of the olivine-spinel stability relation. Am Mineral 53:1439–1455

    Google Scholar 

  • Kumazawa M, Anderson OL (1969) Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite. J Geophys Res 74:5961–5972

    Google Scholar 

  • Lager GA, Meagher EP (1978) High-temperature structural study of six olivines. Am Mineral 63:365–377

    Google Scholar 

  • Levien L, Prewitt CT (1981) High-pressure structural study of diopside. Am Mineral 66:315–323

    Google Scholar 

  • Lewis MF (1966) Elastic constants of magnesium aluminate spinel. J Acous Soc America 40:728–729

    Google Scholar 

  • Liebermann RC (1975) Elasticity of olivine (α), beta (β), and spinel (γ) polymorphs of germanates and silicates. Geophys J R astr Soc 42:899–929

    Google Scholar 

  • Mizukami S, Ohtani A, Kawai N, Ito E (1975) High-pressure x-ray diffraction studies on β- and γ-Mg2SiO4. Phys Earth Planet Inter 10:177–182

    Google Scholar 

  • Mizutani H, Hamano Y, Ida Y, Akimoto S (1970) Compressional-Wave Velocities of Fayalite, Fe2SiO4 Spinel, and Coesite. J Geophys Res 75:2741–2747

    Google Scholar 

  • Morimoto N, Tokonami M, Watanabe M, Koto K (1974) Crystal structures of three polymorphs of CO2SiO4. Am Mineral 475–485

  • Ozima M (1976) Growth of nickel olivine single crystals by the flux method. J Crystal Growth 33:193–195

    Google Scholar 

  • Ralph RL, Ghose S (1980) Enstatite, Mg2Si2O6: Compressibility and crystal structure at 21 kbar. EOS, Trans Am Geophys Union 61:409

    Google Scholar 

  • Reddy KPR, Cooper AR (1981) Oxygen diffusion in magnesium aluminate spinel. J Am Ceram Soc 64:368–371

    Google Scholar 

  • Sasaki S, Prewitt CT, Sato Y, Ito E (1982) Single-crystal study of γ Mg2SiO4. J Geophys Res 87:7829–7832

    Google Scholar 

  • Sato Y (1977) Equation of state of mantle minerals determined through high-pressure Y-ray study. In: Manghnani MH, Akimoto S (eds), High Pressure Research: Applications to Geophysics. Academic Press, New York, NY, pp 642

    Google Scholar 

  • Schreiber E (1967) Elastic moduli of single-crystal spinel at 25 C and to 2 kbar. J Appl Phys 38:2508–2511

    Google Scholar 

  • Sumino Y (1979) The elastic constants of Mn2SiO4, Fe2SiO4, and CO2SiO4, and the elastic properties of olivine group minerals at high temperature. J Phys Earth 27:209–238

    Google Scholar 

  • Sumino Y, Nishizawa O, Goto T, Ohno I, Ozima M (1977) Temperature variation of elastic constants of single-crystal forsterite between-190 and 400 C. J Phys Earth 25:377–392

    Google Scholar 

  • Sung CM, Burns RG (1978) Crystal structural features of the olivine → spinel transition. Phys Chem Minerals 2:177–197

    Google Scholar 

  • Syono Y, Fukai Y, Isihikawa Y (1971) Anomalous elastic properties of Fe2TiO4. J Phys Soc Japan 31:471–476

    Google Scholar 

  • Vaughan MT, Bass JD (1983) Single-crystal elastic properties of protoenstatite: a comparison with orthoenstatite. Phys Chem Minerals 10:62–68

    Google Scholar 

  • Vaughan MT, Weidner DJ (1978) The relationship of elasticity and crystal structure in andalusite and sillimanite. Phys Chem Minerals 3:133–144

    Google Scholar 

  • Verma RK (1960) Elasticity of some high-density crystals. J Geophys Res 65:757–766

    Google Scholar 

  • Wang H, Simmons G (1972) Elasticity of some mantle crystal structures I. Pleonaste and hercynite spinel. J Geophys Res 77:4379–4392

    Google Scholar 

  • Weidner JD, Bass JD, Vaughan MT (1982) The effect of crystal structure and composition on elastic properties of silicates. In: Akimoto S, Manghnani MH (eds), High Pressure Research in Geophysics. Center Acad Publication, Tokyo, Japan

    Google Scholar 

  • Weidner DJ, Carleton HR (1977) Elasticity of coesite. J Geophys Res 82:1334–1346

    Google Scholar 

  • Weidner DJ, Hamaya N (1984) Elastic properties of the olivine and spinel polymorphs of Mg2GeO4 and evaluation of elastic analogs. Phys Earth Planet Interiors, in press

  • Weidner DJ, Sawamoto H, Sasaki S, Kumazawa M (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4. J Geophys Res submitted

  • Weidner DJ, Vaughan MT (1982) Elasticity of pyroxenes: Effects of composition vs crystal structure. J Geophys Res 9349–9354

  • Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Inter 17:7–13

    Google Scholar 

  • Yagi T, Marumo F, Akimoto SI (1974) Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4. Am Mineral 59:486–490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bass, J.D., Weidner, D.J., Hamaya, N. et al. Elasticity of the olivine and spinel polymorphs of Ni2SiO4 . Phys Chem Minerals 10, 261–272 (1984). https://doi.org/10.1007/BF00311951

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311951

Keywords

Navigation