Skip to main content
Log in

Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungusPleurotus eryngii

  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Production of extracellular hydrogen peroxide by fungal oxidases is been investigated as a requirement for lignin degradation. Aryl-alcohol oxidase activity is described in extracellular liquid and mycelium ofPleurotus eryngii and studied under non-limiting nitrogen conditions. This aryl-alcohol oxidase catalyses conversion of primary aromatic alcohols to the corresponding aldehydes and H2O2, showing no activity with aliphatic and secondary aromatic alcohols. The enzyme is stable at pH 4.0–9.0, has maximal activity at 45°–50°C and pH 6.0–6.5, is inhibited by Ag+, Pb2+ and NaN3, and has aK m of 1.2 mM using veratryl alcohol as substrate. A single protein band with aryl-alcohol oxidase activity was found in zymograms of extracellular and intracellular crude enzyme preparations fromP. eryngii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ander P, Eriksson K-E (1978) Lignin degradation and utilization by microorganisms. Prog Ind Microbiol 14:1–58

    Google Scholar 

  • Biswas-Hawkes D, Dodson APJ, Harvey PJ, Palmer JM (1987) Ligninases from white-rot fungi. Coll INRA 40:125–130

    Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6:1–60

    Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, Chichester

    Google Scholar 

  • Dodson PJ, Evans CS, Harvey PJ, Palmer JM (1987) Production and properties of an extracellular peroxidase fromCoriolus versicolor which catalyses Cα-Cβ cleavage in a lignin model compound. FEMS Microbiol Lett 42:17–22

    Google Scholar 

  • Durán N, Rodriguez J, Ferraz A, Campos V (1987)Chrysonilia sitophila (TFB-27441): a hyperligninolytic strain. Biotechnol Lett 9:357–360

    Google Scholar 

  • Eriksson K-E, Pettersson B, Volc J, Musilek V (1986) Formation and partial characterization of glucose-2-oxidase, a H202 producing enzyme inPhanerocheate chrysosporium. Appl Microbiol Biotechnol 23:257–262

    Google Scholar 

  • Farmer VC, Henderson MEK, Russell JD (1960) Aromatic-alcohol oxidase activity in the growth medium ofPolystictus versicolor. Biochem J 74:257–262

    Google Scholar 

  • Forrester IT, Grabski AC, Burgess RR, Leatham GF (1988) Manganese, Mn-dependent peroxidases and the degradation of lignin. Biochem Biophys Res Commun 157:992–999

    Google Scholar 

  • Fukuzumi T (1987) Ligninolytic enzymes of Pleurotus sajorcaju. Coll INRA 40:137–142

    Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete,Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold H (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycetePhanerochaete chrysosporium. Biochem Biophys Res Commun 114:1077–1083

    Google Scholar 

  • Green RV, Gould JM (1984) Fatty acyl-coenzyme A oxidase activity and H202 production inPhanerochaete chrysosporium mycelia. Biochem Biophys Res Commun 118:437–443

    Google Scholar 

  • Guillén F, Martínez AT, Martínez MJ (1988) Detección de una alcohol oxidasa extracellular, productora de peróxido de hidrógeno, enPleurotus eryngii. Biotec-88: Abstract of the 2nd Spanish Conference on Biotechnology, Barcelona, June 19–23, p 388

  • Iwahara S, Nishihira T, Jomori T, Kuwahara M, Higuchi T (1980) Enzymic oxidation ofα,β-unsaturated alcohols in the side chains of lignin-related aromatic compounds. J Ferment Technol 58:183–188

    Google Scholar 

  • Kamra DN, Zadrazil F (1986) Influence of gaseous phase light and substrate pretreatment on fruit-body formation, lignin degradation and in vitro digestibility of wheat straw fermented byPleurotus species. Agric Wastes 18:1–17

    Google Scholar 

  • Kamra DN, Zadrazil F (1988) Microbiological improvement of lignocellulosics in animal feed production. In: Zadrazil F, Reiniger P (eds) Treatment of lignocellulosics by white rot fungi. Elsevier, London, pp 56–63

    Google Scholar 

  • Kelley RL, Reddy A (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures ofPhanerochaete chrysosporium. Arch Microbiol 144:248–253

    Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase in extracellular H2O2 production byPhanerochaete chrysosporium. J Bacteriol 169:2195–2201

    Google Scholar 

  • Kirk TK (1983) Degradation and conversion of lignocellulosics. In: Smith JE, Berry BR, Kristiansen B (eds) The filamentous fungi, vol 4. Arnold, London, pp 266–295

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    Google Scholar 

  • Kuwahara M, Asada Y (1987) Production of ligninases, peroxidases and alcohol oxidases byPhanerochaete chrysosporium and its mutant. Coll INRA 40:171–176

    Google Scholar 

  • Nelson H (1944) A photometric adaptation of the Somogyi method for determination of glucose. J Biol Chem 153:375–380

    Google Scholar 

  • Niku-Paavola M-L, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungusPhlebia radiata. Biochem J 254:877–884

    Google Scholar 

  • Paszczynski A, Huynh V-B, Crawford R (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungusPhanerochaete chrysosporium. Arch Biochem Biophys 244:750–765

    Google Scholar 

  • Ramachandra M, Crawford DL, Hertel G (1988) Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomyceteStreptomyces viridosporus. Appl Environ Microbiol 54:3057–3063

    Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Google Scholar 

  • Somogyi M (1945) A new reagent for the determination of sugars. J Biol Chem 160:61–73

    Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycetePhanerochaete chrysosporium Burds. Science 221:661–663

    Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme fromPhanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase ofPhanerochaete chrysosporium. Methods Enzymol 161:238–249

    Google Scholar 

  • Valmaseda M, Almendros G, Martinez AT (1988) Multivaríate analysis on chemical transformation of lignocellulosic materials by ligninolytic basidiomycetes. Biotec-88: Abstracts of the 2nd Spanish Conference on Biotechnology, Barcelona, June 19–23, p 398

  • Waldner R, Leisola MSA, Fiechter A (1988) Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol 29:400–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillén, F., Martinez, A.T. & Martínez, M.J. Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungusPleurotus eryngii . Appl Microbiol Biotechnol 32, 465–469 (1990). https://doi.org/10.1007/BF00903784

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00903784

Keywords

Navigation