Skip to main content
Log in

Influence of pulp density and bioreactor design on microbial desulphurization of coal

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Pyrite was microbiologically removed by Thiobacillus ferrooxidans in pure and mixed cultures from German bituminous coal at 10% pulp density with maximum pyrite oxidation rate of 350 mg pyritic S/l per day. However, at pulp densities above 20% bacterial growth and consequently pyrite oxidation were completely prevented both in a conventional airlift reactor and in a stirred-tank reactor. Modifying the airlift reactor by adapting a conical bottom part, bacterial growth and pyrite oxidation could be achieved even at 30% pulp density, resulting in a pyrite removal of more than 90% at a pyrite oxidation rate of 230 mg pyritic S/l per day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1984) Mineralöle und Brennstoffe. Beuth, Berlin

  • Beyer M, Ebner HG, Klein J (1985) Bacterial desulphurization of German hard coal. 6th International Symposium on Biohydrometallurgy, Vancouver, Canada, 21.–25.8. 1985

  • Beyer M, Ebner HG, Assenmacher H, Frigge J (1986) Elemental sulphur in microbiologically desulphurized coals. Fuel (in press)

  • Brierley CL (1978) Bacterial leaching. CRC Crit Rev Microbiol 6:207–262

    Google Scholar 

  • Detz CM, Barvinchak G (1979) Microbial desulphurization of coal. Min Congr J 7:75–86

    Google Scholar 

  • Dugan PR, Apel WA (1978) Microbiological desulphurization of coal. In: Murr LE, Torma AE, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic Press, New York, pp 223–250

    Google Scholar 

  • Ebner HG, Schwartz W (1974) Geomikrobiologische Untersuchungen. XII. Verhalten von Mikroorganismen auf uranhaltigen Gesteinen. Z Allg Mikrobiol 14:93–102

    Google Scholar 

  • von der Gathen R (1983) Produktverbesserungen durch Verfahrensentwicklungen in der Steinkohlenaufbereitung. Glückauf 119:1143–1147

    Google Scholar 

  • Harrison AP (1984) The acidophilic Thiobacilli and other acidophilic bacteria that share their habitat. Ann Rev Microbiol 38:265–292

    Google Scholar 

  • Hoffmann MR, Faust BC, Panda FA, Koo HH, Tsuchiya HM (1981) Kinetics of the removal of iron pyrite from coal by microbial catalysis. Appl Environ Microbiol 42:259–271

    Google Scholar 

  • Huber TF, Kossen NWF, Bos P, Kuenen JG (1983) Modelling design and scale up of a reactor for microbial desulphurization of coal. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy, Cagliari, pp 279–289

  • Kargi F (1982a) Microbial coal desulphurization. Enzyme Microbiol Technol 4:13–19

    Google Scholar 

  • Kargi F (1982b) Enhancement of microbial removal of pyritic sulfur from coal using concentrated cell suspension of Thiobacillus ferrooxidans and an external carbon dioxide supply. Biotechnol Bioeng 24:749–752

    Google Scholar 

  • Kargi F (1984) Microbial desulphurization of coal. Adv Biotechnol Processes 3:241–272

    Google Scholar 

  • Kiese S, Ebner HG, Onken U (1980) A simple laboratory airlift fermentor. Biotechnol Lett 2:345–350

    Google Scholar 

  • Kiesskalt S, Matz G (1951) Zur Ermittlung der spezifischen Oberfläche von Kornverteilungen. VDI-Zeitschrift 93:58–60

    Google Scholar 

  • Leathen WW, McIntyre LD, Braley SA (1951) A medium for the study of the bacterial oxidation of ferrous iron. Science 114:280–281

    Google Scholar 

  • Meyers RA (1977) Coal desulphurization. Marcel Dekker, New York

    Google Scholar 

  • Monticello DJ, Finnerty WR (1985) Microbial desulphurization of fossil fuels. Ann Rev Microbiol 39:371–389

    Google Scholar 

  • Myerson AS, Kline PC (1984) Continuous bacterial coal desulphurization employing Thiobacillus ferrooxidans. Biotechnol Bioeng 26:92–99

    Google Scholar 

  • Näveke R, Tepper KP (1979) Einführung in die mikrobiologischen Arbeitsmethoden. Gustav Fischer, Stuttgart

    Google Scholar 

  • Olsen T, Ashman D, Torma AE, Murr LE (1980) Desulphurization of coal by Thiobacillus ferrooxidans. In: Trudinger AP, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Springer, Berlin, pp 693–703

    Google Scholar 

  • Stach EM, Mackowsky MT, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (1982) Stach's Textbook of Coal Petrology. Gebr. Bornträger, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. H. Jüntgen on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, M., Ebner, H.G. & Klein, J. Influence of pulp density and bioreactor design on microbial desulphurization of coal. Appl Microbiol Biotechnol 24, 342–346 (1986). https://doi.org/10.1007/BF00257061

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00257061

Keywords

Navigation