Skip to main content
Log in

T-cell receptor gene rearrangement in primary tumors: effect of genetic background and inducing agent

  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The status of T-cell receptor beta and gamma genes has been assessed in a series of primary tumors induced by a chemical carcinogen or by gamma-irradiation using two inbred strains of mice. It appears that these well-characterized regimens of carcinogenesis yield T-cell tumors showing gene rearrangements consistent with a clonal origin of the tumors. Individual rearranged bands seem to represent orthodox, intralocus recombination events. A variety of rearrangement phenotypes are observed, most strikingly for the gamma genes, and differences in the degree of T-cell receptor gene rearrangements observed can be categorized according to the inducing agent and to the genetic background of the mice, with the implication that premalignant thymocytes have been captured in different stages of T-cell development. Additionally, primary tumors were shown to express significant levels of mature beta gene mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boniver, J., Houben-Defresne, M. P., Goffinet, G., Lenaerts, P., and Betz, E. H.: Target cells and thymus microenvironment in the pathogenesis of thymic lymphomas in C57BL/Ka mice. Int. J. Radiation Oncology Biol. Phys. 11: 65–69, 1985

    Google Scholar 

  • Born, W. J., Yague, J., Palmer, E., Kappler, J., and Marrack, P.: Rearrangement of T cell receptor genes during T cell development. Proc. Natl. Acad. Sci. U.S.A. 82: 2925–2929, 1985

    Google Scholar 

  • Brown, K., Quintanilla, M., Ramsden, M., Kerr, I. B., Young, S., and Balmain, A.: v-ras genes from Harvey and Balb sarcoma virus can act as initiators of two stage mouse carcinogenesis. Cell 46: 447–456, 1986

    Google Scholar 

  • Caccia, N., Kronenberg, M., Saxe, D., Haars, R., Bruns, G. A. P., Goverman, J., Malissen, M., Willard, H., Yoshikai, Y., Simon, M., and Mak, T. W.: The T cell receptor beta chain genes are locat ed on chromosome 6 in mice and chromosome 7 in humans. Cell 37: 1091–1099, 1984

    Google Scholar 

  • Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J.: Isolation of biochemically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299, 1979

    Google Scholar 

  • Corcoran, L. M., Adams, J. M., Dunn, A. R., and Cory, S.: Murine lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell 37: 113–122, 1984

    Google Scholar 

  • Dalla-Favera, R., Martinotti, S., Gallo, R. C., Erikson, J., and Croce, C. M.: Translocation and rearrangement of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219: 963–967, 1983

    Google Scholar 

  • Diamond, L. E., Guerrero, I., and Pellicer, A.: Concomitant K- and N-ras gene point mutations in clonal murine lymphomas. Mol. Cell. Biol. 8: 2233–2236, 1988

    Google Scholar 

  • Garman, R. D., Doherty, P. J., and Raulet, D. H.: Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45: 733–742, 1986

    Google Scholar 

  • Guerrero, I., Calzada, P., Mayer, A., and Pellicer, A.: A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene. Proc. Natl. Acad. Sci U.S.A. 81: 202–205, 1984

    Google Scholar 

  • Guerrero, I., Villasante, A., Corces, V., and Pellicer, A.: Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen. Proc. Natl. Acad. Sci. U.S.A. 82: 7810–7814, 1985

    Google Scholar 

  • Guerrero, I., Villasante, A., Diamond, L., Berman, J. W., Newcomb, E. W., Steinberg, J. J., Lake, R., and Pellicer, A.: Oncogene activation and surface markers in mouse lymphomas induced by radiation and nitrosomethylurea. Leukemia Res. 10: 851–858, 1986

    Google Scholar 

  • Haars, R., Kronenberg, M., Gallatin, N. M., Weissman, I., Owen, F., and Hood, L.: Rearrangement and expression of T cell antigen receptor and gamma genes during thymic development. J. Exp. Med. 164: 1–24, 1986

    Google Scholar 

  • Haran-Ghera, N.: Spontaneous and induced preleukemia cells in C57BL/6 mice: a brief communication. J. Natl. Cancer Inst. 60: 707–710, 1978

    Google Scholar 

  • Haran-Ghera, N. and Peled, A.: Induction of leukemia in mice by irradiation and radiation leukemia variants. Adv. Cancer Res. 30: 45–87, 1979

    Google Scholar 

  • Hayday, A. C., Gillies, S. D., Saito, H., Wood, C., Wiman, K., Hayward, W. S., and Tonegawa, S.: Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 307: 334–340, 1984

    Google Scholar 

  • Hayday, A. C., Saito, H., Gillies, S. D., Kranz, D. M., Tanigawa, G., Eisen, H. N., and Tonegawa, S.: Structure, organization, and somatic rearrangement of T cell gamma genes. Cell 40: 259–269, 1985a

    Google Scholar 

  • Hayday, A. C., Diamond, D. J., Tanigawa, G., Heileg, J. S., Folsom, V., Saito, H., and Tonegawa, S.: Unusual organization and diversity of T cell receptor alpha-chain genes. Nature 316: 828–832, 1985b

    Google Scholar 

  • Heileg, J. S. and Tonegawa, S.: Diversity of murine gamma genes and expression in fetal and adult lymphocytes. Nature 322: 836–840, 1986

    Google Scholar 

  • Iwamoto, I., Rupp, F., Ohashi, P. S., Walker, C. L., Pircher, H., Joho, R., Hengartner, H., and Mak, T. W.: T cell-specific gamma genes in C57BL/10 mice. J. Exp. Med. 163: 1203–1212, 1986

    Google Scholar 

  • Jenkins, J., Rudge, K., and Currie, G. A.: Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312: 651–654, 1984

    Google Scholar 

  • Jones, B., Mjolsness, S., Janeway, C., and Hayday, A. C.: Transcripts of functionally rearranged gamma genes in primary T cells of adult immunocompetent mice. Nature 323: 635–638, 1986

    Google Scholar 

  • Kaplan, H. S., Hirsch, B. B., and Brown, M. B.: Indirect induction of lymphomas in irradiated mice. IV. Genetic evidence of the origin of the tumor cells from the thymic grafts. Cancer Res. 16: 434–436, 1956

    Google Scholar 

  • Kranz, D. M., Saito, H., Heller, M., Takagaki, Y., Haars, W., Eisen, H. N., and Tonegawa, S.: Limited diversity of the rearranged T cell gamma gene. Nature 313: 752–755, 1985

    Google Scholar 

  • Kreja, L., Hartmann, W., and Seidel, H. J.: T cell phenotypes in chemically induced leukemia in mice. Leukemia Res. 9: 321–327, 1985

    Google Scholar 

  • Land, H., Parada, L. F., and Weinberg, R. A.: Tumorigenic conversion of primary embryo fibroblasts requires at least two co-operating oncogenes. Nature 304: 596–602, 1983

    Google Scholar 

  • Leon, J., Kamino, H., Steinberg, J. J., and Pellicer, A.: H-ras activation in benign and self-regressing skin tumors (keratoacamhomas) in both humans and an animal model system. Mol. Cell. Biol. 8: 786–793, 1988

    Google Scholar 

  • Li, Y., Holland, C. A., Hartley, J. W., and Hopkins, N.: Viral integration near c-myc in 10–20 % of MCF 247-induced AKR lymphomas. Proc. Natl. Acad. Sci. U.S.A. 81: 6808–6811, 1984

    Google Scholar 

  • Marcu, K. B., Harris, L. J., Stanton, L. W., Erikson, J., Watt, R., and Croce, C. M.: Transcriptionally active c-myc oncogene is contained within NIARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia. Proc. Natl. Acad. Sci. U.S.A. 80: 519–523, 1983

    Google Scholar 

  • Mayer, A. and Dorsch-Hasler, R.: Endogeneous MuLV infection does not contribute to onset of radiation- or carcinogen-induced routine thymomas. Nature 295: 253–255, 1980

    Google Scholar 

  • Murray, M. J., Cunningham, J. M., Parada, L. F., Dautry, F., Lebowitz, P., and Weinberg, R. A.: The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 33: 749–757, 1983

    Google Scholar 

  • Owen, F. L., Strauss, W. M., Murre, C., Duby, A. D., Hiai, H., and Seidman, J. G.: AKR murine thymic leukemias are from a distinct thymic cell lineage and do not express the beta chain of the T cell antigen receptor. Proc. Natl. Acad. Sci. U.S.A. 83: 7434–7437, 1986

    Google Scholar 

  • Raulet, D. H., Garman, R. D., Saito, H., and Tonegawa, S.: Developmental regulation of T-cell receptor gene expression. Nature 314: 103–107, 1985

    Google Scholar 

  • Reilly, E. B., Kranz, D. M., Tonegawa, S., and Eisen, H. N.: A functional gamma gene formed from known gamma-gene segments is not necessary for antigen-specific responses of murine cytotoxic T lymphocytes. Nature 321: 878–882, 1986

    Google Scholar 

  • Ruley, H. E.: Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–606, 1983

    Google Scholar 

  • Saito, H., Kranz, D. M., Takagaki, Y., Hayday, A. C., Eisen, H. N., and Tonegawa, S.: Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature 309: 757–762, 1984a

    Google Scholar 

  • Saito, H., Kranz, D. M., Takagaki, Y., Hayday, A. C., Eisen, H. N., and Tonegawa, S.: A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. Nature 312: 36–40, 1984b

    Google Scholar 

  • Shen-Ong, G., Keath, E., Piccoli, S., and Cole, M. D.: Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell 31: 443–452, 1982

    Google Scholar 

  • Snodgrass, H. R., Dembic, Z., Steinmetz, M., and von Boehmer, H.: Expression of T cell antigen receptor genes during fetal development in the thymus. Nature 315: 232–233, 1985

    Google Scholar 

  • Southern, E. M.: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517, 1975

    Google Scholar 

  • Thomas, P. S.: Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. U.S.A. 77: 5201–5205, 1980

    Google Scholar 

  • Traunecker, A., Olivieri, F., Allen, N., and Karjalainen, K.: Normal T cell development is possible without “functional” gamma chain genes. EMBO J. 5: 1589–1593, 1986

    Google Scholar 

  • Winoto, A., Mjolsness, S., and Hood, L.: Genomic organization of the genes encoding mouse T cell receptor alpha chain. Nature 316: 832–836, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diamond, L.E., Sloan, S.R., Pellicer, A. et al. T-cell receptor gene rearrangement in primary tumors: effect of genetic background and inducing agent. Immunogenetics 28, 71–80 (1988). https://doi.org/10.1007/BF00346154

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00346154

Keywords

Navigation