Skip to main content
Log in

Dependence of lipid membrane phase transition temperature on the mismatch of protein and lipid hydrophobic thickness

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

A two-component solution theory is studied which incorporates hydrophobic matching as a major contribution to the lipid-protein interactions in biological membranes. A special geometrical constraint has been discovered which has important implications for the quantitative interpretation of physical effects to lipid-protein interactions. The theory has an advantage over conventional Landau-type phenomenological descriptions in that it accounts for phase separation. A certain class of experimental systems, photosynthetic reaction centre and antenna proteins reconstituted into synthetic lipid membranes of different hydrophobic thicknesses, are considered with a view to determining the parameters of the theory. The theoretical predictions are found to be in good agreement with experimental measurements of shifts in the phase transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Dn c PC:

diacyl0glycero-PC with n acyl chain carbon atoms

D12PC:

l-α-dilauroyl PC

D13PC:

l-α-ditridecanoyl PC

D14PC:

l-α-dimyristoyl PC

D15PC:

l-α-dipentadecanoyl PC

D16PC:

l-α-dipalmitoyl PC

LHCP:

light harvesting chlorophyll protein

NMR:

nuclear magnetic resonance

PC:

phosphatidylcholine

RC:

reaction centre

References

  • Abney JR, Owicki JC (1985) Theories of protein-lipid and protein-protein interactions in membranes. In: Watts A, de Pont JJHHM (eds) Progress in protein-lipid interactions, vol 1. Elsevier, Amsterdam, pp 1–60

    Google Scholar 

  • Alonso A, Restall CJ, Turner M, Gomez-Fermandez JC, Goñi FM, Chapman D (1982) Protein-lipid interactions and differential scanning calorimetric studies of bacteriorhodopsin reconstituted lipid-water systems. Biochim Biophys Acta 689:283–289

    Google Scholar 

  • Bloom M, Mouritsen OG (1988) The evaluation of membranes. Can J Chem (in press)

  • Bloom M, Smith ICP (1985) Manifestations of lipid-protein interactions in deuterium NMR. In: Watts A, de Pont JJHHM (eds) Progress in protein-lipid interactions, vol 1. Elsevier, Amsterdam, pp 61–88

    Google Scholar 

  • Boggs, JM, Moscarello MA (1978) Dependence of boundary lipid on fatty acid chain length in phosphatidylcholine vesicles containing a dydrophobic protein from myelin proteolipid. Biochemistry 17:5734–5739

    Google Scholar 

  • Büldt G, Gally HU, Seelig J, Zaccai G (1979) Neutron diffraction studies on phosphatidylcholine model membranes: I. Head group conformation. J Mol Biol 134:673–691

    Google Scholar 

  • Chapman D, Cornell BA, Eliasz AW, Perry A (1977) Interactions of helical polypeptide segments which span the hydrocarbon region of lipid bilayers. Studies of the Gramacidin A lipid-water system. J Mol Biol 113:517–538

    Google Scholar 

  • Cherry RJ (1979) Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559:502–516

    Google Scholar 

  • Cornell BA, Separovic F (1983) Membrane thickness and acyl chain length. Biochim Biophys Acta 733:189–193

    Google Scholar 

  • Covello P, Helene MEM, Reeves LW (1983) On the thickness of hydrophobic bilayers. J Am Chem Soc 105:1469–1473

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624

    Google Scholar 

  • Devaux PF (1983) ESR and NMR studies of lipid-protein interactions in membranes. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 5. Pleunum Press, New York, pp 183–299

    Google Scholar 

  • Edholm O, Johansson J (1987) Lipid bilayer/polypeptide interactions studied by molecular dynamics simulation. Eur Biophys J 14:203–209

    Google Scholar 

  • Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53:595–623

    Google Scholar 

  • Evans E, Kwok R (1982) Mechanical calorimetry of large dimyristoylphosphatidylcholine vesicles in the phase transition region. Biochemistry 21:4874–4879

    Google Scholar 

  • Evans E, Skalak R (1979) Mechanics and thermodynamics of biomembranes. CRC Crit Rev bioeng 3:181–418

    Google Scholar 

  • Gomez-Fernandez JC, Goñi FM, Bach D, Restall CJ, Chapman D (1980) Protein-lipid interaction. Biophysical studies of (Ca2++Mg2+)-ATPase reconstituted systems. Biochim Biophys Acta 598:502–516

    Google Scholar 

  • Grondelle RV, Hunter CN, Bakker JGC, Kramer HJM (1983) Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet-singlet quenching of bacteriochlorophyll fluorescence yield. Biochim Biophys Acta 723:30–36

    Google Scholar 

  • Henderson R (1981) Membrane protein structure. In: Balian R, Chabre M, Devaux PF (eds) Membranes and intercellular communication. Elsevier North-Holland, Amsterdam, pp 229–249

    Google Scholar 

  • Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Google Scholar 

  • Heyn MP, Blume A, Rehorek M, Dencher NA (1981) Calorimetric and fluorescence depolarization studies on the lipidphase transition of bacteriorhodopsin-dimyristoylphosphatidyl-choline vesicles. Biochemistry 20:7109–7115

    Google Scholar 

  • HUchilt JC, Hodges RS, Davis JH (1985) Phase equilibria in an amphiphilic peptide-phospholipid model membrane by 2H nuclear magnetic resonance spectroscopy. Biochemistry 24:1377–1385

    Google Scholar 

  • Inoko Y, Mitsui T (1978) Structural parameters of dipalmitoyl phosphatidylcholine lamellar phases and bilayer phase transitions. J Phys Soc Jpn 44:1918–1924

    Google Scholar 

  • Jähnig F (1981) Critical effects from lipid-protein interaction in membranes. Biophys J 36:329–345, 347–357

    Google Scholar 

  • Janiak MJ, Small DM, Shipley GG (1976) Nature of the thermal pretransition of synthetic phospholipids. Dimyristoyl and dipalmitoyllecithin. Biochemistry 15:4575–4580

    Google Scholar 

  • Janiak MJ, Small DM, Shipley GG (1979) Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem 254:6068–6078

    Google Scholar 

  • Johannsson A, Keightley CA, Smith GA, Richards CD, Hesketh TR, Metcalfe JC (1981) The effect of bilayer thickness and n-alkanes on the activity of the (Ca2+−Mg2+)-dependent ATPase of Sarcoplasmic Reticulum. J Biol Chem 256:1643–1650

    Google Scholar 

  • Klein P, Kanehisa M, DeLisi C (1985) The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–476

    Google Scholar 

  • Kyte J, Doolitte RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Lewis BA, Engelman DM (1983a) Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses. J Mol Biol 166:203–210

    Google Scholar 

  • Lewis BA, Engelman DM (1983b) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J Mol Biol 166:211–217

    Google Scholar 

  • Lis LJ, McAlister M, Fuller N, Rand RP, Parsegian VA (1982) Measurement of the lateral compressibility of several phospholipid bilayers. Biophys J 37:667–672

    Google Scholar 

  • Marčelja S (1976) Lipid-mediated protein interactions in membranes. Biochim Biophys Acta 455:1–7

    Google Scholar 

  • Morrow MR, Huchilt JC, Davis JH (1985) Simultaneous modeling of phase and calorimetric behaviour in an amphiphilic peptide/phospholipid model membrane. Biochemistry 24:5396–5406

    Google Scholar 

  • Morrow MR, Davis JH, Sharon FJ, Lamb MP (1986) Studies of the interaction of human erythrocyte band 3 with membrane lipids using deuterium nuclear magnetic resonance and differential scanning calorimetry. Biochim Biophs Acta 858:13–20

    Google Scholar 

  • Mouritsen OG (1987) Physics of biological membranes. In: Baeriswyl D, Droz M, Malaspinas A, Martinoli P (eds) Physics in living matter. Springer, Berlin Heidelberg New York, pp 76–109

    Google Scholar 

  • Mouritsen OG, Bloom M (1984) Mattress model of lipid-protein interactions in membranes. Biophys J 46:141–153

    Google Scholar 

  • Nagle JF, Wilkinson DA (1978) Lecithin bilayers. Density measurements and molecular interactions. Biophys J 23:159–175

    Google Scholar 

  • Owicki JC, McConnell HM (1979) Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci USA 76:4750–4754

    Google Scholar 

  • Owicki JC, Springgate MW, McConnell HM (1978) Theoretical study of protein-lipid interactions in bilayer membranes. Proc Natl Acad Sci USA 75:1616–1619

    Google Scholar 

  • Peschke J, Rieger J, Möhwald H (1987) Quantitative analysis of membrane distortions induced by mismatch of protein and lipid hydrophobic thickness. Eur Biophys J 14:385–391

    Google Scholar 

  • Pink DA (1984) Theoretical studies of phospholipid bilayers and monolayers. Perturbing probes, monolayer phase transitions, and computer simulations of lipid-protein bilayers. Can J Biochem Cell Biol 62:760–777

    Google Scholar 

  • Pink DA, Georgallas A, Chapman D (1981) Intrinsic proteins and their effect upon lipid hydrocarbon order. Biochemistry 20:7152–7157

    Google Scholar 

  • Riegler J, Möhwald H (1986) Elastic interactions of photosynthetic reaction center proteins affecting phase transitions and protein distributions. Biophys J 49:1111–1118

    Google Scholar 

  • Sackmann E (1984) Physical basis for trigger processes and membrane structures. In: Biological membranes, vol 5. Academic Press, London, pp 105–143

    Google Scholar 

  • Sadler DM, Worcester DL (1982) Neutron scattering studies of photosynthetic membranes in aqueous dispersion. J Mol Biol 159:485–499

    Google Scholar 

  • Sadler DM, Rivas E, Gulik-Krzywicki T, Reiss-Husson F (1984) Measurements of membrane thickness by small-angle neutron scattering of suspensions: Results for reconstituted Rhodopseudomonas sphaeroides reaction-center protein and for lipids. Biochemistry 23:2704–2712

    Google Scholar 

  • Schindler H, Seelig J (1975) Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. A statistical mechanical interpretation. Biochemistry 14:2283–2287

    Google Scholar 

  • Schröder H (1977) Aggregation of proteins in membranes. An example of fluctuation-induced interactions in liquid crystals. J Chem Phys 67:1617–1619

    Google Scholar 

  • Scott HL (1986) Monte Carlo calculations of order parameter profiles in models of lipid-protein interactions in bilayers. Biochemistry 25:6122–6126

    Google Scholar 

  • Scott HL, Cherng S-L (1978) Monte Carlo studies of phospholipid lamellae. Effects of proteins, cholesterol, bilayer curvature, and lateral mobility on order parameters. Biochim Biophys Acta 510:209–215

    Google Scholar 

  • Scott HL, Coe TJ (1983) A theoretical study of lipid-protein interactions in bilayers. Biophys J 42:219–224

    Google Scholar 

  • Seelig J (1981) Physical properties of model membranes and biological membranes. In: Balian R, Chabre M, Devaux PF (eds) Membranes and intercellular communication. Elsevier North-Holland, Amsterdam, pp 15–78

    Google Scholar 

  • Seelig J, Seelig A (1980) Lipid conformation in model membranes and biological membranes. Qu Rev Biophys 13:19–61

    Google Scholar 

  • Silvius JR (1982) Thermotropic phase transitions of pure lipids in model membranes and their modification by membrane proteins. In: Jost PC, Griffith OH (eds) lipid-protein interactions, vol 2. Wiley-Interscience, New York, pp 239–281

    Google Scholar 

  • Tanford C (1973) The hydrophobic effect. Formation of micelles and biological membranes. John Wiley and Sons, New York

    Google Scholar 

  • van Zoelen EJJ, van Dijck PWM, de Kruijff B, Verkleij AJ, van Deenen LLM (1978) Effect of glycophorin incorporation on the physico-chemical properties of phospholipid bilayers. Biochim Biophys Acta 514:9–24

    Google Scholar 

  • Williams JC, Steiner LA, Ogden RC, Simon MI, Feher G (1983) Primary structure of the M subunit of the reaction center from rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 80:6505–6509

    Google Scholar 

  • Williams JC, Steiner LA, Feher G, Simon MI (1984) Primary structure of the L subunit of the reaction center from rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 81:7303–7307

    Google Scholar 

  • Zaccai G, Büldt G, Seelig A, Seelig J (1979) Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J Mol Biol 134:693–706

    Google Scholar 

  • Zuber H (1985) Structure of antenna peptides. In: Michel-Beyerle ME (ed) Antenna and reaction centers of photosynthetic bacteria. Springer Series in Chem Phys, vol 42. Springer, Berlin Heidelberg New York, pp 2–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Danish Natural Science Research Council under grant J.nr. 5.21.99.72

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperotto, M.M., Mouritsen, O.G. Dependence of lipid membrane phase transition temperature on the mismatch of protein and lipid hydrophobic thickness. Eur Biophys J 16, 1–10 (1988). https://doi.org/10.1007/BF00255320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00255320

Key words

Navigation