Skip to main content
Log in

Comparison of the structure of ribosomal 5S RNA from E. coli and from rat liver using X-ray scattering and dynamic light scattering

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The structures of eukaryotic ribosomal 5S RNA from rat liver and of prokaryotic 5S RNA from E. coli (A-conformer) have been investigated by scattering methods. For both molecules, a molar mass of 44,500±4,000 was determined from small angle X-ray scattering as well as from dynamic light scattering. The shape parameters of the two rRNAs, volume V c, surface O c, radius of gyration R s, maximum dimension of the molecule L, thickness D, and cross section radius of gyration R sq, agree within the experimental error limits. The mean values are V c=57±3 nm3, O c=165±10 nm2, R s=3.37±0.05 nm, L=10.8±0.7 nm, D=1.57±0.07 nm, R sa=0.92±0.01 nm.

Identical structures for the E. coli 5S rRNA and the rat liver 5S rRNA at a resolution of 1 nm can be deduced from this agreement and from the comparison of experimental X-ray scattering curves and of experimental electron distance distribution function. The flat shape model derived for prokaryotic and eukaryotic 5S rRNA shows a compact region and two protruding arms. Double helical stems are eleven-fold helices with a mean base pair distance of 0.28 nm. Combining the shape information obtained from X-ray scattering with the information about the frictional behaviour of the molecules, deduced from the diffusion coefficients D 020,w =(5.9±0.2)·10-7 cm2s-1 and (6.2±0.2)·10-7 cm2s-1 for rat liver 5S rRNA and E. coli 5S rRNA, respectively, a solvation shell of about 0.3 nm thickness around both molecules is determined. This structural similarity and the consensus secondary structure pattern derived from comparative sequence analyses suggest that all 5S rRNAs may indeed have conserved essentially the same type of folding of their polynucleotide strands during evolution, despite having very different sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnott S, Hukins DWL, Dover SD (1972) Optimized parameters for RNA double-helices. Biochem Biophys Res Commun 48:1392–1399

    Google Scholar 

  • Behlke J, Welfle H, Wendel I, Bielka H (1980) Physicochemical studies of the 7S complex of rat liver ribosomes and its components. Acta Biol Med Germ 39:33–40

    Google Scholar 

  • Böhm S, Fabian H, Welfle H (1982) Universal structural features of prokaryotic and eukaryotic ribosomal 5S RNA derived from comparative analysis of their sequences. Acta Biol Med Germ 41:1–16

    Google Scholar 

  • Connors PG, Beeman WW (1972) Size and shape of 5S ribosomal RNA. J Mol Biol 71:31–37

    Google Scholar 

  • Damaschun G, Pürschel HV (1971) Röntgen-Keinwinkelstreuung von isotropen Proben ohne Fernordnung. I. Allgemeine Theorie. Acta Cryst A 27:193–197

    Google Scholar 

  • Damaschun S, Müller JJ, Bielka H (1978) Scattering studies of ribosomes and ribosomal components. Methods Enzymol 59:706–750

    Google Scholar 

  • Delihas N, Andersen J (1982) Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res 10:7323–7344

    Google Scholar 

  • Erdmann VA, Doberer HG, Sprinzl M (1971) Structure and function of 5S RNA: The role of the 3′ terminus in 5S RNA function. Mol Gen Genet 114:89–94

    Google Scholar 

  • Erdmann VA, Wolters J, Huysmans E, Vandenberghe A, De Wachter R (1984) Collection of published 5S and 5.8 S ribosomal RNA sequences. Nucleic Acids Res 12:r133–166

    Google Scholar 

  • Fedorov BA, Kröber R, Damaschun G, Ruckpaul K (1976) Experimental and theoretical large-angle X-ray diffuse scattering by globins in solution. Sensitivity of the method. FEBS Lett 65:92–95

    Google Scholar 

  • Fedorov BA, Timchenko AA, Denesyuk AI, Ptitsyn OB, Damaschun G (1979) Comparative analysis of globular protein structures in crystal and in solution with X-ray diffuse scattering. In: Hofmann E (ed) Proteins: structure, function and industrial applications. Pergamon Press, Oxford, pp 153–158

    Google Scholar 

  • Fox JW, Wong KP (1979) The hydrodynamic shape, conformation and molecular model of E. coli ribosomal 5S RNA. J Biol Chem 254:10139–10144

    Google Scholar 

  • Fox JW, Wong KP (1982) Aquisition of native conformation of ribosomal 5S ribonucleic acid from E. coli. Hydrodynamic and spectroscopic studies on the unfolding and refolding of ribonucleic acid. Biochemistry 21:2096–2102

    Google Scholar 

  • Gast K, Zirwer D, Fahrenbruch B, Pittelkow R (1979) Eine einfache Meßanordnung für die quasi-elastische Lichtstreuung. Exp Tech Phys 27:319–329

    Google Scholar 

  • Gast K, Zirwer D, Ladhoff AM, Schreiber J, Koelsch R, Kretschmar K, Lasch J (1982) Auto-oxidation-induced fusion of lipid vesicles. Biochim Biophys Acta 686:99–109

    Google Scholar 

  • Holbrook SR, Sussman JL, Warrant RW, Kim SH (1978) Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol 123:631–660

    Google Scholar 

  • Kao TH, Crothers DM (1980) A proton-coupled conformational switch of E. coli 5S rRNA. Proc Natl Acad Sci USA 77:3360–3364

    Google Scholar 

  • Kumosinski TF, Pessen H (1982) Estimation of sedimentation coefficients of globular proteins: An application of smallangle X-ray scattering. Arch Biochem Biophys 219:89–100

    Google Scholar 

  • Leontis NB, Moore PB (1984) A small angle X-ray scattering study of a fragment derived from E. coli 5S RNA. Nucleic Acids Res 12:2193–2203

    Google Scholar 

  • Morikawa K, Fujiyoshi Y, Ishizuka K, Kawakami M, Takemura S (1984) Various types of 5S rRNA crystals as studied by X-ray diffraction and electron microscopy. Nucleic Acids Res 15:143–146

    Google Scholar 

  • Müller JJ (1983) Calculation of scattering curves for macromolecules in solution and comparison with results of methods using effective atomic scattering factors. J Appl Cryst 16:74–82

    Google Scholar 

  • Müller JJ, Damaschun G, Walter G (1977) Über ein Computer-Programmsystem für die Strukturuntersuchung von Biopolymeren mit Hilfe der Röntgen-Kleinwinkelstreuung. In: Exp Methoden der Molekülphysik, Physikalische Gesellschaft der DDR, Reinhardsbrunn, pp 11–30

  • Müller JJ, Welfle H, Damaschun G, Bielka H (1981) Shape and secondary structure of native 5S RNA from rat liver ribosomes. A small angle and wide angle X-ray scattering study. Biochim Biophys Acta 654:156–165

    Google Scholar 

  • Müller JJ, Damaschun G, Wilhelm P, Welfle H, Pilz I (1982) Comparison of the structures of the native form of rat liver 5S rRNA and yeast tRNAPhe. Small angle and wide angle X-ray scattering study. Int J Biol Macromol 4:289–296

    Google Scholar 

  • Müller JJ, Glatter O, Zirwer D, Damaschun G (1983a) Calculation of small angle X-ray and neutron scattering curves and of translational coefficients on the common basis of finite elements. Studia Biophys 93:39–46

    Google Scholar 

  • Müller JJ, Zirwer D, Damaschun G, Welfle H, Gast K, Plietz P (1983b) The translational frictional coefficients of rape seed 11S globulin, tRNAPhe and ribosomal 5S RNA. Calculation on the basis of finite elements. Studia Biophys 96: 103–108

    Google Scholar 

  • Müller JJ, Damaschun H, Damaschun G, Gast K, Plietz P, Zirwer D (1984) Determination of hydrodynamic properties of biopolymers from small angle X-ray scattering data. Studia Biophys 102:171–175

    Google Scholar 

  • Müller JJ, Misselwitz R, Zirwer D, Damaschun G, Welfle H (1985a) A-form to A′-form conformational switch of double helices in rat liver 5S and 5.8S rRNA. Eur J Biochem 148:89–95

    Google Scholar 

  • Müller JJ, Damaschun G, Schmidt PW (1985b) The model resolution function — a technique for estimating the quality of approximation of particles by models in small angle X-ray or neutron scattering. J Appl Cryst 18:241–247

    Google Scholar 

  • Nazar RN, Wildeman AG (1983) Three helical domains from a protein binding site in the 5S RNA-protein complex from eukaryotic ribosomes. Nucleic Acids Res 11: 3155–3168

    Google Scholar 

  • Österberg R, Sjöberg B, Garrett RA (1976) Molecular model for 5S RNA. A small angle X-ray scattering study of native, denatured and aggregated 5S RNA from E. coli ribosomes. Eur J Biochem 68:481–487

    Google Scholar 

  • Pieler T, Digweed M, Erdmann VA (1984) The structure and function of ribosomal 5S rRNAs. In: Clark BFC, Petersen HU (eds) Gene expression. Alfred Bencon Symposium 19. Munksgaard, Copenhagen

    Google Scholar 

  • Pilz I (1969) Absolute intensity measurements of small angle X-ray scattering by means of a standard sample. J Colloid Interface Sci 30:140–144

    Google Scholar 

  • Provencher SW (1982a) A constrained regularization method for inverting data represented by linear algebraic or intergral equations. Comput Phys Commun 27:213–227

    Google Scholar 

  • Provencher SW (1982b) CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Google Scholar 

  • Wrede P, Erdmann VA (1973) Activities of B. Stearothermophilus 50S ribosomes reconstituted with prokaryotic and eukaryotic 5S RNA. FEBS Lett 33:315–319

    Google Scholar 

  • Teller DC, Swanson E, De Haen CH (1979) The translational friction coefficient of proteins. Methods Enzymol 61: 103–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J.J., Zalkova, T.N., Ziwer, D. et al. Comparison of the structure of ribosomal 5S RNA from E. coli and from rat liver using X-ray scattering and dynamic light scattering. Eur Biophys J 13, 301–307 (1986). https://doi.org/10.1007/BF00254212

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00254212

Key words

Navigation