Skip to main content
Log in

Calorimetric studies on thein vitro polymerization ofPr. mirabilis flagellin

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

The heat effects accompanying the isothermalin vitro polymerization ofPr. mirabilis flagellin on short flagella fragments (seeds) have been measured in phosphate buffer pH 7, at various temperatures employing a batch microcalorimeter. Additionally, at 20 ‡C, measurements have been performed in phosphate as well as Tris- HCl buffer at pH 7.5.

The rate of both heat uptake and release during the process of polymerization was shown to be proportional to the rate of molar ellipticity changes observed by parallel circular dichroism experiments.

No change in the state of protonation of flagellin occurs during the polymerization as indicated by the constancy of the enthalpy values determined in buffers with different heats of ionization. The apparent molar enthalpy of polymerization at 25 ‡C, pH 7, is −34.7±3 kcal per mole of flagellin, the relatively large error mainly resulting from uncertainties of the determination of the percentage of unpolymerized monomers after completion of the reaction.

The most prominent feature of the results obtained in this study is the large temperature variation of the enthalpy, corresponding to a temperature independent heat capacity change ofδc p =−3039±100 cal per degree per mole of flagellin, the error limits referring to the standard deviation in a linear regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abram, D., Koffler, H.: In vitro formation of flagella-like filaments and other structures from flagellin. J. molec. Biol.9, 168–185 (1964)

    Google Scholar 

  • Adams, E. C., Weiss, M. R.: Calorimetric studies of the hemoglobin-haptaglobin reaction. Biochem. J.115, 441–447 (1969)

    Google Scholar 

  • Asakura, S.: Polymerization of flagellin and polymorphism of flagella. Advan. Biophys. (Tokio)1, 99–155 (1970)

    Google Scholar 

  • Asakura, S., Eguchi, G., Jino, T.: Reconstitution of bacterial flagellain vitro. J. molec. Biol.10, 42–56 (1964)

    Google Scholar 

  • Asakura, S., Eguchi, G., Jino, T.:Salmonella flagella:in vitro reconstruction and overall shapes of flagellar filaments. J. molec. Biol.16, 302–316 (1966)

    Google Scholar 

  • Asakura, S., Eguchi, G., Jino, T.: Unidirectional growth ofSalmonella flagellain vitro. J. molec. Biol.85, 227–236 (1968)

    Google Scholar 

  • Baugh, R. J., Trowbridge, C. G.: Calorimetry of some trypsin-trypsin inhibitor reactions. J. biol. Chem.247, 7498–7501 (1972)

    Google Scholar 

  • Bjurulf, O., Suurkuusk, J., Wadsö, J.: Thermochemistry of some specific protein binding reactions. In: Proceedings of First European Biophysics Congress (Broda, E., Locher, A., Springer-Lederer, H., Eds.) pp 347–349. Wien: Verlag der Wiener Medizinischen Akademie 1971

    Google Scholar 

  • Bode, W.: Physikalisch-chemische und biochemische Charakterisierung der Flagella und des Flagellins des BakteriumsPr. mirabilis. Dissertation, Univ. München 1971

  • Bode, W.: Angew. Chem.85, 731–741; Internat. Edit.12, 683–693 (1973)

    Google Scholar 

  • Bode, W., Blume, A.: Thermal transitions ofProteus mirabilis flagellin as studied by circular dichroism and adiabatic differential calorimetry. FEBS Letters36, 318–322 (1973)

    Google Scholar 

  • Bode, W., Glossmann, H.: Polymerization behaviour of carboxy peptidase B treatedProteus mirabilis flagellin. Hoppe-Seylers Z. physiol. Chem.351, 1285–1288 (1970)

    Google Scholar 

  • Bode, W., Engel, J., Winklmair, D.: A model of bacterial flagella based on small-angle X-ray scattering and hydrodynamic data which indicate an elongated shape of the flagellin protomer. Europ. J. Biochem.26, 313–327 (1972)

    Google Scholar 

  • Gerber, B. R., Noguchi, H.: Volume change associated with the G-F transformation of flagellin. J. molec. Biol.26, 197–210 (1967)

    Google Scholar 

  • Gerber, B. R., Asakura, S., Oosawa, F.: Effect of temperature on thein vitro assembly of bacterial flagella. J. molec. Biol.74, 467–487 (1973)

    Google Scholar 

  • Glossmann, H., Bode, W.: Cyanogen bromide cleavage ofProteus mirabilis flagellin. Hoppe-Seylers Z. physiol. Chem.353, 298–306 (1972)

    Google Scholar 

  • Goldammer, E. v., Hertz, H. G.: Molecular motion and structure of aqueous mixtures with nonelectrolytes as studied by nuclear magnetic relaxation methods. J. phys. Chem.74, 3734–3755 (1970)

    Google Scholar 

  • Green, N. M.: Thermodynamics of the binding of biotin and some analogues by avidin. Biochem. J.101, 774–780 (1966)

    Google Scholar 

  • Hearn, R. P., Richards, F. M., Sturtevant, J. M., Watt, G. D.: Thermodynamics of the binding of S-peptide to S-protein to form ribonuclease S. Biochemistry10, 806–817 (1971)

    Google Scholar 

  • Hinz, H. J., Shiao, D. D. F., Sturtevant, J. M.: Calorimetric investigation of inhibitor binding to rabbit muscle aldolase. Biochemistry10, 1347–1352 (1971)

    Google Scholar 

  • Holtzer, A., Emerson, M. F.: On the utility of the concept of water structure in the rationalization of the properties of aqueous solutions of proteins and small molecules. J. phys. Chem.73, 26–33 (1969)

    Google Scholar 

  • Jaenicke, R., Lauffer, M. A.: Polymerization-depolymerization of TMV-protein. Biochemistry8, 3083–3092 (1969)

    Google Scholar 

  • Kauzmann, W.: Some factors in the interpretation of protein denaturation. Advan. Protein Chem.14, 1–62 (1969)

    Google Scholar 

  • Klein, D., Yaguchi, M., Foster, J. F., Koffler, H.: Conformational transitions in flagellins J. biol. Chem.243, 4931–4935 (1968)

    Google Scholar 

  • Klug, A.: The design of self-assembling systems of equal units. In: Formation and fate of cell organelles (Warren, K. B., Ed.) pp 1–18. New York: Academic Press 1967

    Google Scholar 

  • Kuroda, H.: Polymerization ofSalmonella, Proteus andBacillus flagellinsin vitro. Biochim. biophys. Acta (Amst.)285, 253–267 (1972)

    Google Scholar 

  • Sturtevant, J. M.: Methods in enzymol. (Colowick, S. P., Kaplan, N. O., Eds.). Calorimetry26, 227–253 (1972)

  • Tanford, C.: Protein denaturation, Part C. Theoretical models for the mechanism of denaturation. Advan. Protein Chem.24, 1–95 (1970)

    Google Scholar 

  • Uretani, Y., Asakura, S., Imahori, K.: A Circular dichroism study ofSalmonella flagellin. Evidence for conformational change on polymerization. J. molec. Biol.67, 85–98 (1972)

    Google Scholar 

  • Velick, S. F., Bagott, J. P., Sturtevant, J. M.: Thermodynamics of nicotinamide-adenine dinucleotide addition to the glyceraldehyde 3-phosphate dehydrogenases of yeast and of rabbit skeletal muscle. An equilibrium and calorimetric analysis over a range of temperatures. Biochemistry10, 779–786 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bode, W., Hinz, H.J., Jaenicke, R. et al. Calorimetric studies on thein vitro polymerization ofPr. mirabilis flagellin. Biophys. Struct. Mechanism 1, 55–64 (1974). https://doi.org/10.1007/BF01022560

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022560

Key words

Navigation