Skip to main content
Log in

Natural convections in conjugated single and double enclosures

Freie Konvektion in Einzel- und Doppelhohlräumen

  • Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The natural convection in single and double conjugated enclosures are numerically investigated. The single and double enclosures are formed by low conductance walls with finite thickness. The outside vertical surfaces of the conducting walls are of the third kind of boundary condition while the top and bottom outside surfaces are adiabatic. The problem studied is characterized by a dominant horizontal temperature gradient and the thermal boundary conditions at the cavity surfaces can not be specified in priori. Numerical results reveal the characteristics in such kind of enclosures and show the importance of the thermal boundary conditions on the natural convection in enclosures. It is also found that the natural convections in the conjugated double enclosures are basically the same, with a major difference in their fluid temperature levels.

Zusammenfassung

Es wird der Wärmetransport durch freie Konvektion in Einzel- und Doppelhohlräumen numerisch untersucht, welche von Wänden endlicher Dicke und niedriger Wärmeleitfähigkeit gebildet werden. An deren vertikalen Außenseite soll die Randbedingung 3. Art herrschen, während Boden- und Deckenseite als adiabat vorausgesetzt seien. Das untersuchte Problem ist durch einen dominanten horizontalen Temperaturgradienten charakterisiert, sowie den Umstand, daß die Randbedigungen auf den Berandungen der Hohlräume nicht von vornherein festgelegt werden können. Numerische Ergebnisse lassen das charakteristische Übertragungsverhalten solcher Hohlräume erkennen und zeigen den Einfluß der thermischen Randbedingungen auf die natürliche innenseitige Konvektion. Ferner wurde gefunden, daß freie Konvektionsvorgänge in Doppelhohlräumen grundsätzlich nicht anders als in Einzelhohlräumen ablaufen, abgesehen davon, daß diese auf unterschiedlichen Temperaturniveaus stattfinden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity

a E,W,N,S, aP :

coefficients in discretization equation

C p :

specific heat

g :

gravitational acceleration

G :

nominal flow rate in cavity,G=j ✓u✓π dy

h :

heat transfer coefficient

H :

cavity height

J :

radiosity

k :

thermal conductivity

Nu :

Nusselt number

p :

pressure

q :

heat flux

Q :

heat transfer rate

Ra :

Rayleigh number

S c,ad :

additional source term

S res :

mass residual in entire computation domain

T :

temperature

u, v :

velocity components inx- andy-direction

W :

cavity width

x, y, z :

Cartesian coordinates

β:

volume expansion coefficient

ϕx :

distance between interface to its neighbouring grid point

Δx, Δy :

dimensions of control volume

∈:

surface emmisivity

Ξ:

dimensionless temperature, Ξ=(T−T 2)/(T 1)/(T 1−T2)

μ:

dynamic viscosity

π:

density

b :

bottom

e :

eastern

f :

fluid

h :

horizontal

r :

radiative

s :

solid

t :

top, total

References

  1. Hoogendoorn, C. J.: Natural Convection in Enclosure. Proceedings of the Eighth Int. Heat Transfer Conf., San Fancisco (1986) 111–119

  2. Ostrach, S.: Natural Convection in Enclosures. ASME J. Heat Transfer 110 (1988) 1175–1190

    Google Scholar 

  3. Elshebiny, S. M.;Hollands, K. G. T.;Raithby, G. D.: Effect of Thermal Boundary Conditions on Natural Convection In Vertical and Inclined Air Layers. ASME J. Heat Transfer 104 (1982) 515–520

    Google Scholar 

  4. Larson, D. W.;Viskanta, R.: Transient Combined Laminar Free Convection and Radiation in a Rectangular Enclosur. J. Fluid Mech. 78 (1976) 65–85

    Google Scholar 

  5. Koutsoheras, W.;Charters, W. W. S.: Natural Convection Phenomena in Inclined Cells with Finite Side-Wall A Numerical Solution. Solar Energy 19 (1977) 433–438

    Google Scholar 

  6. Meyer, B. A.;Mitchell, J. W.;El-Wakil, M. M.: The Effect of Thermal Wall Properties on Natural Convection in Inclined Rectangular Cells. ASME J. Heat Transfer 104 (1982) 111–117

    Google Scholar 

  7. Shiralkar, K. S.;Tien, C. L.: A Numerical Study of the Effect of a Vertical Temperature Difference Imposed on a Horizontal Enclosure. Numer. Heat Transfer 5 (1985) 185–197

    Google Scholar 

  8. Kim, D. M.;Viskanta, R.: Effect of Wall Heat Conduction on Natural Convection Heat Transfer in a Square Enclosure. ASME J. Heat Transfer 107 (1985) 139–144

    Google Scholar 

  9. Ranganathan, P.;Viskanta, R.: Heat Transfer through a Rectangular Solid with a Gas-Filled Cylindrical Hole. Numen. Heat Transfer 8 (1985) 469–484

    Google Scholar 

  10. Mallinson, G. D.: The Effects of Side-Wall Conduction on Natural Convection in a Slot. ASME J. Heat Transfer 109 (1987) 419–425

    Google Scholar 

  11. Sparrow, E. M.;Prakash, C.: Interaction between Internal Natural Convection in an Enclosure and An External Natural Convection Boundary-Layer. Int. J. Heat and Mass Transfer 24 (1981) 895–907

    Google Scholar 

  12. Patankar, S. V.: Numerical Heat Transfer and Fluid Flow: Hemisphere, Washington, DC, 1980

    Google Scholar 

  13. Tao, W.-Q.: Numerical Heat Transfer. Xi'an Jiaotong University Press, Xi'an, China, 1988

    Google Scholar 

  14. Tao, W.-Q.;Li, W.: Numerical Method for the Treatment of the Combined Conduction-Radiation within A Solution Domain. Journal of Xi'an Jiaotong University 19 (1985) 65–76

    Google Scholar 

  15. Yang, M.;Wang, Y. Q.;Fu, Y. H.;Tao, W.-Q.: A Numerical Method for Coupled Conduction and Convection Heat Transfer with Surface Radiation. J. Xi'an Jiaotong University 26 (1992) 25–31

    Google Scholar 

  16. Beckermann, C., Smith, T. F.: Incórperation of Internal Surface Radiant Exchange in the Finite Volume Approach. Numer. Heat Transfer 23(B) (1993) 127–133

    Google Scholar 

  17. Ostrach, H.;Gahavan, C.: Effect of Stabilizing Thermal Gradients on Natural Convection in Rectangular Enclosures. ASME J. Heat Transfer 101 (1979) 238–243

    Google Scholar 

  18. Fu, B.-I.;Ostrach, S.: The Effects of Stabilizing Thermal Gradients on Natural Convection in a Square Enclosure in Natural Convection. ASME Symp. vol. HTD 16 (1981) 91–104

    Google Scholar 

  19. De Vahl Davis, G.;Jone, I. P.: Natural Convection in a Square Cavity. A Comparison Exercise. In: Numerical Methods in Thermal Problems, Edited by R. W. Lewis, K. Morgan, B. A. Schreifler, Pinerige Press, Swansea, U.K. (1981) 552–572

    Google Scholar 

  20. Roux, B.;Grodin, J. C.;Bontoux, P.;Gilly, B.: On a Higher Order Accurate Method for the Numerical Study of Natural Convection in a Vertical Square Cavity. Numer. Heat Transfer 1 (1978) 331–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C.Y., Tao, W.Q. Natural convections in conjugated single and double enclosures. Heat and Mass Transfer 30, 175–182 (1995). https://doi.org/10.1007/BF01476527

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01476527

Keywords

Navigation